NASA Contractor Report 172214

MINIVER UPGRADE FOR THE AVID SYSTEM

VOLUME III: EXITS USER'S AND INPUT GUIDE

John E. Pond Craig P. Schmitz

REMTECH, Inc. Huntsville, AL 35805

Contract NAS1-16983 August 1983

(WASA-CR-172214) MINIVER UPGRADE FOR THE AVID SYSTEM. VOLUME 3: EXITS USER'S AND INPUT GUIDE Final Report (Restech, Inc., Huntsville, Ala.) 208 p HC A10/MF A01

N84-11773

CSCL 12A G3/61 42393

National Aeronautics and Space Administration

Längley Řěseárch Center Hampton Virginia 23665

FOREWORD

This final report presents work which was conducted for Langley Research Center (LaRC) in response to requirements of Contract NAS1-16983. The work presented was performed by REMTECH, Inc., Huntsville, Alabama and is entitled ''MINIVER Upgrade For The AVID System''. The final report consists of three volumes.

VOLUME 1: LANMIN User's Manual

VOLUME 2: LANMIN Input Guide

VOLUME 3: EXITS User's and Input Guide

The NASA technical coordination for this study was provided by Ms. Kathryn E. Wurster of the Vehicle Analysis Branch of the Space Systems Division.

TABLE OF CONTENTS.

Section	Page	,
1.0	INTRODUCTION	
2.0	TECHNICAL DISCUSSION 4	
	2.1 SLAB MODEL	
	2.2 COMPARISON WITH ANALYTICAL SOLUTION 8	
	2.3 THIN SRIN MODEL	
	2.4 ABLATOR-SUBLIMER MODEL	
3.0	DESCRIPTION OF THE PROGRAM	
4.0	DESCRIPTION OF SUBROUTINES	
	4.1 MAIN	
	4.2 SUBROUTINE PROP	
	4.3 SUBROUTINE INTP	
	4.4 SUBROUTINE DATA1	
	4.5 SUBROUTINE COMPCC	
	4.6 SUBROUTINE STRUCT	
	4.7 SUBROUTINE LOAD	
	4.8 SUBROUTINE ABSUB	
	4.9 SUBROUTINE DATA2	
	4.10 SUBROUTINE PICTUR	
	4.11 SUBROUTINE CONTMP	
	4.12 SUBROUTINE NODE	
	4.13 SUBROUTINE HEATN	•
	4.14 SUBROUTINE VFAC	•
	4.15 SUBROUTINE DIST	ţ
	4.16 SUBROUTINE TMSTEP)
	4.17 SUBROUTINE INPGEO)
	4.18 SUBROUTINE SUBPR 43	L
	4.19 SUBROUTINE SRIPF	į
	4.20 SUBROUTINE CORG	j
	4.21 SUBROUTINE HONEY 4	•
	4.22 SUBROUTINE RGAP	Ŀ
	4.23 SUBROUTINE STAND	j
	4.24 SUBROUTINE THINS)
5.0	INPUT	L
	5.1 LANMIN GENERATED ENVIRONMENT FILE	Ž
	5.2 MATERIAL PROPERTIES FILE 6	
	5.3 STRUCTURES FILE	-
	5.4 EXAMPLE CASE ONE (ABLATOR, RADIATION GAP,	
	THIN SKIN, Z-STANDOFF) 8	3
	5.5 EXAMPLE CASE ONE RERUN FROM STRUCTURES FILE 9	
	5.6 EXAMPLE CASE TWO (SLAB, SLAB, BONEYCOMB, AND	-
	CORRUGATED)	2

TABLE OF CONTENTS (Continued)

1		
	Šecti	Page Page
F	6.0	OUTPUT
	7.0	CONCLUSIONS AND RECOMMENDATIONS
	8.0	REFERENCES
		APPENDIX (EXITS LISTING)

Section 1.0

INTRODUCTION

The EXITS code described in this document is a thermal analysis tool which allows the user to rapidly predict thermal protection system performance for advanced space transportation vehicle reentry. Design and weights optimization can be accomplished by repeated analysis within the constraints and guidelines of system performance.

EXITS is designed to run interactively on a small or mainframe computing system in conjunction with the LANMIN code. LANMIN, as described in Volume I and II is run, given a trajectory, geometry, heating rate methods, etc., to provide an input file containing the thermal environment information needed for the body points specified. Information flow for this process is depicted in Figure 1.1.

The state of the s

The user then calls EXITS in an interactive mode and sets certain input parameters, start time, end time, print time, etc. and defines the TPS structure by selecting structure types from a menu presented to him. In its present form, the menu contains seven different structure types, including an ablator, slab, radiation gap, etc. By stacking these structures, the entire TPS is defined and a nodal mesh is automatically generated. EXITS thus uses the LANMIN generated input file and calculates the temperature history of cach node through the atructure.

During the calculation, all of the heats are integrated and printed out. These include the convected, reradiated, sensible heat, ablated heat, and advected heat. A total energy balance is made to determine the method's conservation.

EXITS uses an explicit (Euler) integration of the energy equation using equivalent radiation conductors where internal or reradiation exists. An abla-

Fig. 1.1 Information Flow For Thermal Protection System Analysis

tion routine has been included using a simple ablator-sublimer model which in--cludes the latent heat and heat required for the moving interface (advected).

For materials with high thermal conductivity (aluminum, copper, etc.), a thermaily 'thin' structure has been included to avoid the time step problems explicit methods have with these materials. Details of these methods are described in the Technical Discussion, Section II.

The program structure, flow charts, etc. are given in Section III, Description of Program. Each subroutine is described in Section IV.

Input and Output data is described in Sections V and VI respectively. Finally, conclusions and recommendations are presented in Section VII. A listing of the code is presented in the Appendix.

Section 2.0

TECHNICAL DISCUSSION

This section describes the methods used in calculating the thormal response of the TPS structure. A basic energy balance performed at each node during the time marching using an explicit Euler integration forms the basis of the code. Special methods are used to describe the response of the ablator-sublimer and thermally thin structures. However, when complicated structures are used, the program logic branches off and constructs equivalent thermal networks, and from solutions of these networks, equivalent thermal conductance is computed and placed into the primary thermal network.

Presently, EXITS contains the capability to analyze seven different structure types. These are listed below as follows:

STRUCTURE TYPE	- Numbe
SLAB	1
RADIATION GAP	2
HONEYCOMB	3
CORRUGATED	4
Z STANDOFF	5
THIN SKIN	6
ABLATOR SUBLIMER	7

The methods used for analysis of the slab, thin skin, and ablator-sublimer are contained in this section. The methods for the radiation gap, honeycomb, corrugated, and Z-standoff structure are actually the same as the slab so therefore the logic used to compute the equivalent conductivity is not presented here but is given in Section IV, Description of Subroutines.

The thermal slab model is the finite difference representation of the heat conduction equation and is used to obtain the temperature response of the slab and ablator structure types. To obtain a finite difference numerical solution to the heat conduction equation, the derivatives in space and time are replaced by finite difference analogs. The heat conduction equation for an isotropic material with one spacial dimension is:

$$\rho C \frac{\partial T}{\partial \theta} = k \frac{\partial^2 T}{\partial x^2}$$

The space derivatives can be represented in the following manner referring to the temperature distribution depicted below.

Finite Difference Temperature Distribution

Expanding about point 0 using Taylor's series for the temperature at 2

$$T_2 = T_0 + \Delta x_2 \frac{\partial T}{\partial x} \Big|_0 + \frac{\Delta x_2^2}{2!} \frac{\partial^2 T}{\partial x^2} \Big|_0 + 0 (\Delta x_2^3) + \dots$$

In a like manner, expanding about 0 for the temperature at 1

$$T_1 = T_0 - \Delta x_1 \frac{\partial T}{\partial x_1} \Big|_0 + \frac{\Delta x_1^2}{21} \frac{\partial^2 T}{\partial x_1^2} \Big|_0 - 0 (\Delta x^3) + \dots$$

ORIGINAL PAGE IS OF POOR QUALITY

Combining these two expressions, ignoring higher order terms and solving for

$$\frac{3^{2}T}{3x^{2}}\Big|_{0}^{n} = \frac{2}{(\Delta x_{1} + \Delta x_{2})} \left[\frac{T_{1}^{n} \Delta x_{2} + T_{2}^{n} \Delta x_{1} - T_{0}^{n} (\Delta x_{1} + \Delta x_{2})}{\Delta x_{1} \Delta x_{2}} \right].$$

If we take a forward difference approximation for the time derivative as shown below

$$\frac{\partial T}{\partial \theta} = \frac{T_0^{n+1} - T_0^n}{\Delta \theta}$$

and substitute into the heat conduction equation we find

$$\rho C \left(\frac{\Delta x_1 + \Delta x_2}{2} \right) \frac{T_0^{n+1} - T_0^n}{2} = \frac{k}{\Delta x_1} \left(T_1^n - T_0^n \right) + \frac{k}{\Delta x_2} \left(T_2^n - T_0^n \right)$$

If the thermal capacitance is defined as

$$C_1 = \rho C V_1 = \rho C \left(\frac{\Delta x_1 + \Delta x_2}{2} \right)$$

and the conductors as

$$K_{ij} = \frac{k}{\Delta x_{ij}}$$

we have, upon substitution and some algebra

$$T_{i}^{n+i} = T_{j}^{n} + \frac{\Delta G}{C_{i}} \sum_{j=1}^{2} K_{ij} (T_{j}^{n} - T_{i}^{n})$$
.

ORIGINAL PAGE IS

This expression is the basis of the thermal balance at each node in the conduction network. However, for nodes adjacent to a radiation gap or atructure in which the heat transfer mechanism is not by pure conduction, we can form equivalent conductors.

The maximum stable time step, $A\Theta$, which can be taken can be found by rearranging our finite difference algorithm as follows

$$T_1^{n+1} = T_1^n \left(1 - \frac{\Delta \Theta}{C_1} \sum_{j} K_{1j}\right) + \frac{\Delta \Theta}{C_1} \sum_{j} K_{1j} T_j^n$$

and noting that the coefficient of $T_1^{\tilde{n}}$ must remain positive for all ΔQ . A negative coefficient would mean that the greater the temperature at time step n, the less the temperature at time step n + 1 which would not make sense. We now have

$$1 - \frac{\Delta \vartheta}{C_{ij}} \sum_{j} K_{ij} \ge 0$$

ot

$$\Delta\Theta \leq \frac{C_1}{\sum_{i} K_{i,j}}.$$

ORIGINAL PAGE 15 OF POOR QUALITY

A major feature in the development of this code was the thermal element. which consists of a thermal mass and a heat transfer path between two nodes located at the ends of the element shown below

Typical Thermal Element

Half of the thermal mass of an element is assigned to each node. The thermal elements are then stacked to define the complete thermal protection system. The slab and ablator materials are divided into several elements by the program. All other structure types consist of a single thermal element which are stacked upon each other sharing their common node points.

Constructing the network in this manner introduces slight errors where structures of varying capacitance are adjacent to one another and also at the surface node. In these cases, the node is not placed in the exact center of the thermal mass, however, energy is conserved.

2.2 COMPARISON WITH ANALYTICAL SOLUTION

As a check on the accuracy of the numerical algorithm, the solution was compared to an analytical solution, Ref. 1, of the partial differential equation. The convective heating of a plate of thickness $2\delta_i$ from both sides is analogous to heating of a slab of thickness δ_i from one side with an adiabatic

ORIGINAL LYNCK MI OF POOR QUALITY

backwall boundary condition. If the convective heat transfer coefficient, h, is held constant then the following boundary conditions will apply, where $T=t-t_{g}$.

$$T = T_1 \text{ at } 0 = 0$$

$$\frac{\partial T}{\partial x} = 0 \text{ at } x = 0 \text{ (center of slab)}$$

$$\frac{\partial T}{\partial x} = \frac{h}{k} \text{ T at } x = \pm \delta_1 \text{ (surface)}.$$

The product solution is found to be

$$\frac{T}{T_1} = \frac{t - t_f}{t_1 - t_f} = 4 \sum_{n=1}^{\infty} \left(\frac{\sin M_n}{2M_n + \sin 2M_n} \right) e^{-M_n^2 \Theta} \cos M_n \left(\frac{x}{\delta_1} \right)$$

where M_{n} are the roots of the transendental equation

$$N_u = M_n \tan M_n$$

Nu being the Nusselt number given as

$$N_u = \frac{h\delta_1}{k}$$
.

ORIGINAL PAGE IS OF POOR QUALITY

Nomenciature for this case and a graphical representation of the transcendental equation are shown in Fig. 2.1.

Fig. 2.1 Infinite Slab Heated From Both Sides With Graphical Solution For Mn

(+)

D

A digital computer program was written to find the roots M_n and evaluate the analytical solution. Various numbers of terms were taken in the infinite series to check for convergence. A satisfactory solution was found after 50 terms were used.

The test case consisted of a layer of cork one inch thick with an adiabatic backside model using six nodes through the thickness. A comparison of this case with the analytical solution is presented in Fig. 2.2. Agreement appears to be quite good.

NOTES:

- 6 Node Model, Cork Slab
 Insulated Backside
 Adabatic Wall Temp = 10,416.6°R
 Film Coefficient = .001276 Btu/ft2-6R

Fig. 2.2 Comparison of Thermostructures Code with Analytical Solution

ORIGINAL PAGE IS

2.3 THIN SKIN MODEL

For a slab type structure which is made of a material which has a high thermal conductivity, the temperature gradient through the material can be expected to be small for relatively thin sections and the heat fluxes encountered during reentry. If this gradient is to be modeled using the slab option, we see that the time step required to resolve this gradient will be very small since in general, $\Delta\Theta_i \sim \frac{C_i}{2K_{ij}}$, where one or more of the K_{ij} 's will be large. The small time step will result in long run times with very little increase in accuracy of the analysis.

If, however, we assume that the temperature gradient through the thin skin type structure is zero while still allowing heat to be stored in the structure, we can circumvent this time step restriction since we have effectively taken the conductors in the high thermal conductivity material out of the network. The resulting slab of material now becomes thermally "thin", i.e. no temperature gradient and long run times can be avoided.

Consider the generalized slab of material and nodel network in Figure 2.3

Fig. 2.3 Typical Thermally Thin Structure

If we write the equations for a heat balance at time step n + 1 at nodes 2 and 3, we have

$$C_2T_2^{n+1} = T_2^n C_2 + (T_1K_1 + T_3K_2 - T_2K_1 - T_2K_2)^{\frac{n}{2}}$$

ORIGINAL PAGE 19 OF POOR QUALITY

and

$$C_3 T_3^{n+1} = T_3^n C_3 + (T_2 K_2 + T_4 K_3 - T_3 K_2 - T_3 K_3)^{0}$$

Now if we assume there is no temperature gradient between node 2 and 3 and add the two equations together to find the total energy stored at the end of time step n+1, we have

$$C_2T_2^{n+1} + C_3T_3^{n+1} = T_2^n C_2 + T_3^n C_3 + (T_1K_1 - T_2K_1 + T_4K_3 - T_3K_3)^n \Delta 9$$

Solving for the temperature of the thin section, T_{s-s} , we arrive at the algorithm for the thin skin section temperature below

$$T_{2-3}^{n+1} = T_{2-3}^{n} + \frac{\Delta \theta}{C_{2} + C_{3}} (T_{1}^{n}K_{1} - T_{2}^{n}K_{1} + T_{4}^{n}K_{3} - T_{3}^{n}K_{3}).$$

Looking at this expression, we note that the conductor K_2 has been eliminated and will no longer cause the small time step problem.

Considering the second law and finding a stable time step criteria can be accomplished as follows. Factoring $T^{\hat{n}}_{1-1}$ we have

$$T_{23}^{n+1} = T_{23}^{n} \left[1 - \frac{\Delta \theta}{C_2 + C_3}(k_1 + K_3)\right] + \frac{\Delta \theta}{C_2 + C_3} \left[T_1^n K_1 - T_4^n K_4\right].$$

The first term in brackets must remain positive for any stable time step so it follows that

$$\frac{\Delta\theta}{C_2+C_2}(K_1+K_3)\leq 1$$

or

$$\Delta \Theta \leq \frac{C_2 + C_3}{K_1 + K_3} .$$

We see that the stable time step expression is in the familar form $\frac{C_j}{2K_{ij}}$ but does not have large conduction values which will cause the small time step problems.

The previous discussion considers the thin skin section to be a general case. For the case where the slab is on the surface exposed to the reentry environment or is located on the backside where the adiabatic boundary condition is used or where it exists by itself where both conditions exist, special logic is imposed.

2.4 Ablator-Sublimer Model

The logic used to compute sublimer-ablator performance takes into account the energy management requirement at the material surface as follows:

- 1. The energy conducted away from the surface
- The sensible energy stored in the material
- 3. The latent heat required to sublime the material
- 4. The convected or advected energy required due to the receding surface.

The numerical scheme devised to account for these effects is incorporated into the program's network by special logic which considers the moving boundary and the latent heat required to sublime the material using the slab logic. When the temperature of the surface remains below the temperature of sublimation, the thermal balance is performed just as it would be done in any nonablator material. If, however, at the end of any time step we see that the temperature has exceeded the sublimation temperature, the amount of energy that was required to exceed the sublimation temperature is computed and the surface node temperature is set to the sublimation temperature. The excess energy is then used to compute the amount of material which is sublimed.

ORIGINAL PAGE IS OF POOR QUALITY

Considering the four node network shown in Figure 2.4, we see that the surface has

Fig. 2.4 Nodal Mesh And Temperature Distribution For Ablator-Sublimer

reached the sublimation temperature. Additional heat added to the surface which is not radiated or conducted away is heat which sublimes the surface material and advances the surface into the cooler material.

We first compute an excess amount of heat which was used to take the sufface node temperature over the sublimation temperature with the following expression

$$\Delta q = C_1 (T_1 - T_{SUB})$$

and then set

Next, we compute the surface recession distance from the latent heat of aublimation, L, and the density as follows

$$\Delta S = \frac{\Delta q}{\rho L_{eff}}.$$

As the surface records, the melt line must also recode, so we move the boundary between node 1 and 2. This results in the mass in node 2 at temperature T_s being brought to the sublimation temperature T_s thus, the energy added to the system must be taken into account.

If we look at Figure 2.5 below where the temperature through the ablator is shown and

Fig. 2.5 Node Movement For Ablator-Sublimer

one time step is ΔS , we see that if the node boundary between 1 and 2 is moved 2/3 ΔS and node 2 is moved 1/3 ΔS , the material in node 1 and node 2 will be completely eliminated after a given number of steps. However, before we completely eliminate node 1 and 2, we stop when a prescribed amount of material is left in node 2 and raise its temperature to T_{SIIR} . Node 3 now becomes node

ORIGINAL PAGE IS OF POOR QUALITY

number 2, and the remaining nodes are renumbered. The process now continues until node 2 is eliminated again.

If we now consider the original numbering scheme, we see that the node boundary between node 1 and node 2 is a moving boundary or looking at it in another way, node 1 is fixed in space (Eulerian) and nodes 2 and greater are fixed (LaGrangian) to a moving material. In this sense, we see that energy is convected or advected into node 1 and this energy must be supplied by the sero-dynamic heating environment. Referring to Fig. 2.5, we can see that this amounts to

$$\rho C_{p} = \frac{2\Delta S}{3} (T_{SUB} - T_{2}).$$

Since this energy must be supplied by the aerodynamic heating and is only required when ablation occurs, we adjust the latent heat of sublimation to account for this. We then compute an effective latent heat or ablation from the following expression

$$L_{eff}^{n+1} = \frac{\left(L_{eff}^{n} V_{1}^{n} + \frac{2}{3} \Delta S^{n+1} \left(L + C_{p} \left(T_{SUB} - T_{2}^{n}\right)\right)\right)}{V_{1}^{n} + \frac{2}{3} \Delta S^{n}}$$

In the expression above, L is the actual heat of ablation $L^n_{\ eff}$ is the effective heat of ablation from the last step and V_1^n is the volume of node 1 at the last time step.

In applying this method, heat conducted from node 1 to node 2 and 2 to 3 etc. is accounted for in the same manner as the slab described in Section 2.1.

An example of this procedure is shown in Figure 2.6 for a hypothetical ablator. Results are compared to a steady state analytical solution from Ref. 2.

OF POOR QUALITY OF POOR IN

Fig. 2.6 Comparison of Results for the Recession Rate

Section 3.0

DESCRIPTION OF THE PROGRAM

An effort was made throughout the development of the EXITS code to keep the structure of the code as modular as possible and to define specific functions which could be broken off into subroutines. By in large, this has been accomplished, and as a result, the program capability can be expanded without extensive reprogramming.

The method of defining thermal structure types, i. e. slab, honeycomb, corrugated etc. facilitates the organization of the program since each structure type, with the exception of the slab and the ablator, consists of a conductor connecting two nodes located at the ends of the structure and capacitance, one half of which is assigned to each node. The slab and ablator are similarily defined with the exception being several nodes are placed within the structure.

The main driver contains calls to the primary functions or primary subroutines. These primary functions in turn call secondary routines which supply required information. The structure of the EXITS code is shown in Table 3.1. The routines are arranged so that the MAIN controls the program flow, calls input routines, contains the time marching iterative loop and creates the output file.

A more detailed flow chart and arrangment of the subroutines is shown in Figure 3.1. Each subroutine's calling structure is shown in Table 3.2. A full description of each subroutine is given in the next section.

No blank common is used, only named common and it's location is shown in Table 9.3.

Table 3.1 Simplified Functional Structure

a fit to the same Time a

CALLS SUBROUTINE	MAIN	PROP		DATAL	COMPCC	STEERCE	1001	ABSUB	DATA2	PICTUR	CONTRO	KON	HEATE	VFAC	DIST	TREFER	INFEED	SUBPR	SRIPE		HUNEY	REAP	STATE	THINS
MAIN		X		X	×			X	X	X	X	X	X			X	X	X						
PROP			X																					
INTP																								
DATA1																								
COMPCC		X					X													X	X	X	X	X
STRUCT																								
LOAD																								
ABSUB	1	X								X														
DATA2	ĺ																							
Pictur	İ																							
CONTMP	1																							
NODE	}	X																						
HEATN																								
VFAC	1														X	•								
DIST	1																							
TMSTEP	•																							
INPGEO	1					X				X														
SUBPR																								
SRIPF	1																							
CORG	1	X	,											2	K)	•				
HONEY		, , , , , , , , , , , , , , , , , , ,																						
RGAP		X													,					K				
STAND		X)	`				•	•				
TEINS		×	•																					

TABLE 3.2 Subroutine Calling Structure

ROUTINE	MAIN	PROP	INI	DATA1	COMPCC	STRUCT	LOAD	ABSUB	DATA2	PICTUR	CONTINE	NODE	BEATN	VFAC	DIST	THESTEP	INPGEO	SUBPR	SRIPE	CORG	HONEY	RGAP	STAND	THINS
ENVIR	×								X			_	×		=	• •	, .		<u> </u>	_			<u> </u>	
GAP	x				X		X		••			X	•				X			x	X	¥	¥	x
INIT	x			X		X		X	X	X		X					X			••	•	^	^	^
TAX	X				X			X				X					**							
TIME	x				X			X			X	X				X	X							
ARA	x				X		X	X			X	X				X	•							
LD	x			X		X	X	X		X	X	X				X	X							
NODES	X			X				X			X	X				••	••							
CTMP	x										X													
CAC	X				X			X			• •													
PICT	X							X		X		X					X							
Sublm	x							X			X													
TITLE	x			X		X		X		X		X					X							
Press	X				X			X			X	X					••			x	X	1		ХX
SAVE	X							X												• •	•	•	•	•
DTA	l		X	X																				
CSUB				X														X						
TITL2	1									;	K						×							
FACT														X	X					X			X	
sf														X					X				X	

Subroutine PROP Contains No Common Statement.

TABLE 3.3 Named Common Statements And Subroutine Locations

Section 4.0

DESCRIPTION OF SUBROUTINES

This section describes the main driver and the twenty three subroutines that comprise the EXITS code. The description presented is an overall description which may include the subroutine function, method and program logic.

4.1 MAIN

The main driver of the EXITS code controls the major functions of the program and also contains the output calls. Logic for calling the major subroutines is found in this part of the program. Constants and control flags and initial values of integrated heat loads are first set to their prescribed values. The interactive input routine INPGEO is called. Then initial temperatures are set and subroutines DATA1 and DATA2 are called to obtain the material property and environment data. A call to subroutine NODE sets up the thermal network of nodes, capacitors and conductors for each body point. A call to PICTUR sends a depiction of the structure and node location to the line printer.

The temperature integration starts with the time loop after further initialization. Output and units conversion take place within the time loop which is controled by the print flag NPEG. The adiabatic wall enthalpy, film coefficient and pressure is found from a call to HEATN. If an ablator-sublimer is used, the ablator properties are found from two calls to SUBPR. Values for the conductors and capacitors are computed from COMPCC. The time step DTSM is calculated from stability criteria and the user supplied parameter STAB. Temperatures for all nodes in the structure are computed at the end of the time step by subroutine COMTMP. If an ablator is called for, the recession and renumbering of the node and conductor sequence is done in ABSUB. Finally, at

the end of the time integration loop, the heat loads, sensible heat, advected heat, and sublimed heat are integrated and time is increased by the amount DTSM. A check is made to see if the number of steps or time has exceeded the input values and if not control is returned to the top of the integration loop.

4.2 SUBROUTINE PROP

This subroutine returns thermophysical properties for the material specified by the variable MAT as a function of temperature, T1, and pressure, Q. Subroutine INTP is called with T1 and P as the independent arguments after the property table numbers are computed for the density, specific heat, conductivity and emissivity. Properties for ablator material, heat of ablation and temperature of ablation, are not computed by PROP. These properties are found by the subroutine SUBPR.

4.3 SUBROUTINE INTP

This subroutine linearly interpolates in either two or three dimensional arrays for material properties as a function of temperature or as a functica of temperature and pressure. The arguments X, P, N, Y, are respectively, temperature, pressure, table number and the returned property. The subroutine interpolates in both monovariate and bivariate tables. Ablator-sublimer properties, sublimation temperature and heat of sublimation, are not found by INTP but are found by SURPR. Data for the properties are stored in the array CC(N,J) for the monovariate arrays and CC(N,J) and BSV(N,JT,IL) arrays for the bivariate tables. The arrangement of data in the arrays for the two types of tables are shown in the following examples. Data for the monovariate tables are shown in Table 4.1.

ORIGINAL PAGE IS

CC(N, 1)5	NYLON PHEN CONDUCTIVITY
CC(N, 2)-0.0	1.39E-5 CC(N,3)
CC(N,4)-460.0	1.39E-5
660.0	1.94E-5
910.0	2.50E-5
CC(N, 10) - 1000.0	2.50E-5

TABLE 4.1 Arrangement of Data For Monovariate Properties

Data for the bivariate table are shown in Table 4.2.

Initially a check is made on the sign of CC(N,2) to determine if the data for table N is monovariate or bivariate. If the sign is positive, the data is searched to find the two temperatures to interpolate between and a straight line interpolation is used.

If the sign on the variable CC(N,2) is negative, then a bivariate table is assumed and the independent variable array, pressure stored in CC(N,3) to CC(N, (-CC(N,2)+2)), is searched to find the increment in the pressure direction. The temperatures are then searched to find the two temperatures between which the interpolation is to be performed and the pressure increment applied. Finally, with two interpolated values found in the pressure direction, the temperature increment is applied and the final value is computed and returned through Y in the argument.

4.4 SUBROUTINE DATA1

Subroutine DATA1 finds the material property data for the materials given, renumbers the material identifiers, MATS(I,LT,IM), and stores the material property data in arrays to be used later in the thermal analysis. This routine first reads through the data and picks out the data from the materials used in the model. Material identification numbers are then changed to the order in which they appear to minimize the storage requirement in the CC(I,J) and BSU(I,J) arrays.

BSV(N, I, J)

TABLE 4.2 Arrangement Of Data For Bivariate Properties

•E = -CC(N,1) + 2 ••E = K + CC(N,1) •••N = TABLE NUMBER

3.

CC(N, 1) = NUMBER OF TEMPERATURE ENTRIES CC(N, 2) = NUMBER OF PRESSURE ENTRIES When a material is found or matched to the material specified, MAT(I,LT,IM), this routine reads the title card and next set of data cards according to the number specified. The next three sets are then read for a total of four tables. If the first entry in the independent array of any table is negative, the table is assumed to be bivariate and a different set of logic is used to store the data. Data for the monovariate tables are stored in an array, CC(N,J), where N is the table number. If the data is found to be bivariate, then the independent variables are stored in CC(N,J) array and the dependent variables are stored in CC(N,J). Table 4.6. Each material property set in the property file must appear in the prescribed order, density, specific heat, conductivity, and emissivity. Units for these properties must be entered in BTU's, feet, seconds, pounds mass, pounds force, and degrees Rankine.

For ablator-sublimer material, the material property number of the fifth and sixth property is entered on the title card. When the same material identifier number is found, the temperature of sublimation and the heat of sublimation as a function of pressure is given as the fifth and sixth property and stored in the array CCS(I,J).

4.5 SUBROUTINE COMPCC

Subroutine COMPCC computes the values of the conductors and capacitors for the network. The capacitor C(I) and conductor CD(I) values for the slab and ablator structure types are computed directly in COMPCC. Capacitor and conductor values for the other structures are found from routines called from COMPCC. Values for the conductors between the nodes for the slab and the ablator are found by calculating the distance between the nodes from the node position array, XX(I), and then finding the conductivity from the average temperature between the nodes. Conductor values are found from the expression

$$K_1 = \frac{k}{\Delta x}$$

ORIGINAL PAGE IS OF POOR QUALITY

In the same loop that the conductors are computed, the capacitors are found. The mass of the material between the nodes is computed and multiplied by the specific heat. Since one half the mass is associated with each node, the capacitance value is divided by two and half of it is summed at each node. Capacitance value for each node is found from

$$Ci = \sum_{j=1}^{2} \frac{\rho_{j}^{V_{j}C} \rho_{j}}{2.0}$$

where the summation on j is on the thermal mass adjacent to the node i. At this time, the mass of the structure is also computed and stored in XMAS.

For structure other than slab type, JN = 1, or ablator, JN = 7, COMPCC branches off to the following routines, Table 4.3.

JN	Structure Type	Subroutine
2	RADIATION GAP	RGAP
3	HONEYCOMB	HÔNEÝ
4	ČORRUGATED	CORG
5	z-standoff	STAND
6	'THIN' SKIN	THINS

TABLE 4.3 Routines For Computing Effective Conductance

Before branching off however, subroutine LOAD is called. This routine takes information, (i.e. geometry, materials etc.) from named common, LD, and loads it into the named common, GAP. The subroutines called when JN = 2 through 6 compute the effective thermal conductance, XK, mass XM, and capacitance values CPP1 and CAP2 and returns these values through the named common LD. Subroutine COMPCC then sums the capacitor values in the C(I)s and the mass IMAS. The conductor is then defined in CD(I).

4.6 SUBROUTINE STRUCT

Subroutine STRUCT is the routine that handles the structure files.

STRUCT opens the structure file and either locates a specific structure that already exists in the file or adds an additional structure to the file. Every structure has a corresponding structure number, and a two line description, along with the structure variables.

4.7 SUBROUTINE LOAD

This routine takes data from the named common LD which describes the geometry and materials of the following structure types

RADIATION GAP BONEYCOMB CORRUGATED Z-STANDOFF THIN SEIN

and loads it into the named common GAP. In addition, the temperature of the upper and lower surfaces are set for the material property lookups and the radiation conductance. The material identifier numbers MATS(MP, IS, I) are loaded into the M(I) array and the six geometric parameters, XP(MP, IS, J), are loaded into the X(I) array.

4.8 SUBROUTINE ABSUB

Subroutine ABSUB provides the logic to predict ablator-sublimer recession, the node spacing and the effective heat of ablation. This routine is called by main after the sublimation temperature is reached. Ablator variables are passed through the named common SUBLM where the following variables are significant.

TSUB - Sublimation temperature ORIGINAL PAGE IS IL - Latent heat of sublimation OF POOR QUALITY ILP - Effective heat of sublimation EXCHT - Excess heat over time step ERCHSV - Excess heat from last time step QADVS - Advected heat from previous time step

First, this routine computes the distance of the surface recession, AS, by the following expression

Time at last iteration

TMŠV

From this value of ΔS the surface node is moved a distance of ΔS , the second node is moved $\Delta S/3.0$ and the boundary between the two nodes is moved 2 $\Delta S/3.$ If the distance between the first and second node, XLTS, becomes less than XMIN, the second node is dropped from the network and nodes, capacitors, locations, and conductors for the rest of the network are renumbered. Figure 4.1 shown below describes some of the nomenclature used in this routine.

Fig. 4.1 Nomenclature For Ablation Lugic

After the nodes and the node boundaries have been moved as shown in this figure, the total energy required to sublime the mass in node one is computed as follows

where L' is the effective heat of sublimation from the provious step and L is the physical heat of sublimation. The new effective heat of sublimation new is computed from the expression below

The sensible heat added to node one by moving the melt line 2*DS/3 is the heat advected across the moving boundary and is compensated for by increasing the heat of sublimation to form an effective heat of sublimation. This increase amounts to

QADV =
$$\rho C_p XTST2* (T_{SUB} - T_2)$$

and is shown in the figure as the cross hatched area.

Dropping node two and renumbering the network is accomplished in the last part of the routine, after which subroutine FICTUR is called and a new schematic of the structure is printed on the line printer.

4.9 SUBROUTINE DATA2

Subroutine DATA2 reads data from Unit 7 which defines the environment and was created by LANMIN. Data on the LANMIN output file are shown in Section 5.1. The body point number for the particular point in question, LBP is passed to DATA2 through the argument. The file is then searched for the correct body point and, once found, the following quantities are read from the file and

TIME	TM1 (10)
FILM COEFFICIENT	BC1 (10)
ADIABATIC WALL ENTHALPY	BAW1 (10)
PRESSURE	PRES1 (10)
FRESSURE	PRESI (IC)

The largest number of entries in these tables is dimensioned by the common variable NMEN and currently set to 50. If a scarch of the file does not reveal a match of the body point number, a message is printed, CANNOT FIND BODY POINT.

4.10 SUBROUTINE PICTUR

Subroutine PICTUR displays a description of the structure for a specific Body Point in the form of a picture. PICTUR is called in the EXITS program in two ways. The first way is from INPGEO, right after the structure of a Body Point is defined. This is a quick look picture, that appears on the interactive device, and is used for determining if the structure defined is really the structure desired. If not, an opportunity is allowed to redefine the structure for the Body Point correctly.

The other way th 'PICTUR is called is from MAIN after the node structure has been defined. This picture is written to the Output file and corresponds to the specific body point that is being executed at that time.

If an ablator-sublimer structure is chosen, then additional calls of PICTUR will occur each time a node is dropped from the structure. For each node that is dropped, a picture will be written to the Output file that describes the structure of the body point after dropping the node. An example of a picture made by PICTUR is shown in Fig. 4.2. It includes a picture representation of the structure of each layer stacked together and also information like the materials used, the structure type and some of the dimensions.

Fig. 4.2 Line Printer Representation Of Sample Structure From Subroutine PICTUR

4.11 SUBROUTINE COMTMP

Subroutine COMTMP is the subroutine which calculates the new temperatures T(I) at the end of the time step given the old temperatures TO(I), capacitors C(I), and conductors CD(I) using the heat balance, Section 2.0, at each of the nodes in the structure. Two types of logic are used to compute the temperatures. The first part of the subroutine is devoted to setting up the heat balances and the boundary conditions for the thin skin structure type if a thin skin section is adjacent to the node in question. The second part performs heat balances for all other structural types.

At the beginning of the routine a check on the flag ISBFG is made to determine if thin skin logic is to be used any within the structure. If not, the logic flow goes directly to the standard heat balance for each node. To determine if a node is adjacent to a thin skin element, a check is made on the conductors an either side of the node. If a conductor value is greater than 10°, then the thin skin heat balance is to be used. (A conductor value of 10° is set in subroutine THINS).

Logic is included to determine if the node is above or below the thin skin

section or if the thin skin section lies on the surface or is the last structural type and requires the adiabatic boundary condition.

The standard heat balance, Section 2.0, is used for all nodes other than nodes adjacent to the thin skin sections. A check is made to see if the node in question is a surface node or if it is the last node. Finally, the temperature of the surface node is checked to see if it has exceeded the sublimation temperature for a ablator-sublimer structure. If this is the case, the exceed heat is calculated.

EXCHT =
$$(T(1) - T_{SUB}) \cdot c_1$$
,

the flag NAB set equal to one and the surface temperature set to TSUB.

4.12 SUBROUTINE NODE

Subroutine NODE is called from MAIN to set up the nodel network and to initialize temperatures.

The logic starts by taking one structure type at a time beginning at the surface and working down. A check is made on the structure type, IST, to see if it is a slab or ablator-sublimer. If a slab or ablator-sublimer is found, it is divided into layers and nodes assigned as follows. The layer thickness is controlled by the input parameter DTIM which divides the total thickness into layers to give a stable value of DTIM shown below

$$DX = \sqrt{\frac{DTIM \cdot 2 \cdot k}{\rho C_D}}$$

The number of layers, conductors, are found from

$$NX = \frac{H}{DX} + 1$$

where H is the thickness of the slab or ablator-subliner. Finally, the length of each conductor in the slab is found from

At each conductor, the mode number at the upper and lower end of the conductor is stored in the L(IC,2) array, the initial temperatures T and TO are set and the node positions XX(IC) are assigned. Finally, at the end of this subroutine, the network information is written out which shows node spacing, structure type, material type, conductor number, and node numbers.

4.13 SUBROUTINE HEATN

This routine linearly interpolates the heating and pressure environment generated by LANMIN and stored in the named common ENVIR. Time (TIME), is the independent argument while the film coefficient (HC), adiabatic wall enthalpy (HAW), pressure (PRES), are returned to MAIN. The counter ISU allows the code to start the interpolation search at the same place in the arrays the last time this routine was called.

4.14 SUBROUTINE VFAC

Subroutine VFAC computes the geometric view factors of NN two dimensional surfaces using the crossed strings method. The named common SF contains the area, AR(I), emissivity, EPP(I), view factors F(I,J), and area view factor products ASF(I,J), of up to ten surfaces which may see each other within an encit-sure. Coordinates of the end points of straight line surfaces are contained in the XX and YY arrays in the named common FACT. Two nested DO loops, I and J, cycle through each surface. The area of surface I is found from the subroutine

RE BEAR JAMPINO FOR POOR OUTLINE

DIST which finds the distance between the end points assuming that the surface is a straight line surface.

The view factor using the crossed strings method is shown below, Ref. 3. Given two surfaces shown in Fig. 4.3.

Fig. 4.3 Crossed Strings Nomenclature

$$F_{1-j} = \frac{\left(\overline{AD} + \overline{BC}\right) - \left(\overline{AC} + \overline{BD}\right)}{2 A_1}$$

In other words, the view factor from surface I to J is equal to the lengths of the crossed strings minus the uncrossed strings divided by twice the area of surface I.

Subroutine DIST is called to find the lengths of the crossed and uncressed strings. The variable SUMF is the sum of the view factors of one surface to all other surfaces which should equal 1 but is not now printed out.

4.15 SUBROUTINE DIST

Subroutine DIST finds the distance between two points given their two dimensional coordinates. The named common FACT contains the coordinates of the end points of the line segments which make up the radiation enclosure. The coordinates are contained in the XX(I,J) and YY(I,J) arrays where the I subscript is the surface number and J is equal to 1 or 2 depending upon which end of the surface is considered. The distance formula

$$D = \sqrt{(\dot{X_1} - \dot{X_2})^2 + (\dot{Y_1} - \dot{Y_2})^2}$$

is used to compute the distance.

ORIGINAL PAGE IS OF POOR QUALITY

4.16 SUBROUTINE THETEP

This subroutine determines the stable time step for the explicit time integration of the energy balance at each node. For the general case the maximum stable time step for the nodal network shown in Figure 4.4 is

$$\Delta \Theta \leq \frac{C(I)}{CD(J) + CD(J-1)} MIN.$$

Fig. 4.4 Nomenclature For Slab Time Step Calculation

For the case where the node lies on the surface, the conductor CD(J-1) is replaced by CONV + CRAD, the sum of the convective and radiative conductors. For the adiabatic backwall, the conductor CD(J) is set to zero.

The thin skin stability requirement for the configuration shown in Figure 4.5

Fig. 4.5 Nomenclature For Thin Skin Time Step Calculation

is found by ignoring the very high conductor value of the thin skin section. In general, the stability requirement for node N1 or N2 is

$$\Delta\Theta \leq \frac{C (N1) + C (N2)}{CD (KM1) + CD (KP1)} MIN$$

For a thin skin surface node, the convection and radiation conductors are included in CD(RM1). For the adiabatic backwall CD(RP1) = 0.

After the minimum $\Delta\Theta$ is found, the resulting time step is divided by the input parameter STAB to insure stability.

4.17 SUBROUTINE INFGEO

Subroutine INPGEO is the interactive routine that sets up the initial conditions and defines the structure for each Body Point to be run, asks for the FILE NAME of the file that contains the LANMIN (MINIVER) data for each body point, and asks for the FILE NAME of the file that contains all previously defined structures. (NOTE: Use of this file is optional). This subroutine also

asks for the FILE NAME of the file that is to contain the EXITS output.

The initial, final and delta_times for the output print are also set here.

The control parameters may also be changed at this point if the user desires.

Otherwise, default values are used.

The number of body points to be run is then defined and the conditions for each body point are defined. For each body point, an initial and sink temperature is defined as well as the structure of that body point. The structure for a body point may be chosen from the structure file by structure number or by creating a new structure definition.

Creating a new structure is done by layers usi - structure types, material numbers, and dimensions. After the structure of a body point is defined, a simple picture of that structure is displayed and the structure of the next body point is defined. After the structure and inital condition for all the body points are defined, INPGBO returns to MAIN.

4.18 SUBROUTINE SUBPR

I

Subroutine SUBPR interpolates in an array of data to find the temperature and latent heat of sublimation as a function of surface static pressure as supplied by LANMIN. These properties are stored in the CCS (N, NMB9) array found in the named common CSUB. The data is stored in the following manner

```
CCS (N,1) = Number of X-Y pairs in array
CCS (N,2) = First independent variable (Pressure)
CCS (N,3) = First dependent variable
CCS (N,4) = Second independent variable
CCS (N,5) = Second dependent variable
etc.
```

The routine first checks to see if the value of the argument, I, is out of range

ORIGINAL PAGE OF POOR QUALITY

of the independent variables in the table, and if so, assigns the correct subscripts to extrapolate off the end of the table. If the value is not out of
range, a search is conducted to find the two independent variables which bound
the value and a simple straight line interpolation is performed.

4.19 SUBROUTINE SRIPF

Subroutine SRIPF finds the radiation interchange factor, in an enclosure given the areas, emissivities and the geometric view factors found in VFAC. The named common SF contains the information in AR(I) (areas), EPP(I) (emissivity), and F(I,J) (geometric view factors). The product of the area and radiant interchange factor is stored in ASF(I,J).

The method used in SRIPF is a network method which is solved by an iterative technique for the radiosity between each of the surfaces. If we consider the network in Figure 4.6 for an enclosure with three surfaces

Fig. 4.6 Network for Typical Three Surface Enclosure

we see that

$$q_{NET j} = \sum_{k=1}^{n} F_{jk} A_{j} (J_{k} - J_{j})$$

ORIGINAL PAGE [2] OF POOR QUALITY

٥t

$$q_{NET} - j = \frac{\epsilon_j A_j}{\rho_j} (J_j - E_{bj})$$
.

Equating these two expressions and by use of some algebra, we see that

$$J_{j} = \begin{bmatrix} \frac{\varepsilon_{j}}{1 - \rho_{j}} F_{jj} \end{bmatrix} E_{bj} + \frac{\rho_{j}}{1 - \rho_{j}} F_{jj} \sum_{\substack{k=1 \ k \neq j}}^{n} J_{k} F_{ik}$$

is the final expression for the radiosity at node j. Using the following iterative relaxation procedure

$$J_{j}^{n+1} = (1 - \beta) J_{j}^{n} + \beta J_{j}$$

where the relaxation parameter, \$\beta\$, is typically .5, convergence,

$$\frac{J_{j}^{n}-J_{j}^{n-1}}{J_{j}^{n}} \leq .001$$
GREATEST

is found within ten iterations for the structures described in this code. After the radiosities are found, the radiant interchange area factors are found from

ASF (1,J) =
$$A_{i-j}A_{i} = \frac{A_{i}F_{i-j}(J_{i-1}J_{j})}{(E_{bi}-E_{bi})}$$

where the black body emissive power E is assigned arbitrarily.

4.20 SUBROUTINE CORG

This routine determines the effective thermal conductivity, thermal capacity and mass of a corrugated panel section considering heat transfer by conduction and radiation through the panel. We first consider a small section of the corrugated panel shown in Figure 4.7

ORIGINAL MADE IN OF POOR QUALITY

Fig. 4.7 Corrugated Panel Configuration

and choose two planes of symmetry and assign the three nodes 1, 2, and 3. The geometric and material parameters are contained in the named common GAP. The three material thicknesses are TH1, TH2, TH3, while material identifiers are contained in M1, M2, M3. Overall height is TH and the pitch is P. Temperatures at 1 and 2 are given as T1 and T2. These parameters are assigned their respective variable names in subroutine LOAD which is called immediately before CORG is called. The temperature at 3 is unknown, but given the temperatures at 1 and 2, geometric and thermophysical properties, the temperature at 3 can be solved by iteration. The equivalent network for this system consists of a conduction path from node 1 to node 2 passing through node 3. In addition, there is radiative heat transfer from node 1 to 3 and reradiative heat transfer from 3 to 1. The radiative enclosure for the upper, lower, and corrugated structure is modeled using three planes shown below

Fig. 4.8 Radiation Enclosure for Corrugated Panel

ORIGINAL PAGE 12 OF POOR QUALITY

Plane 2 is a plane of symmetry in which the emissivity is zero and all incident radiation is reflected back into the enclosure which is the emitted and reflected of radiation from the reflected enclosure 1', 3', 2. The coordinates of the planes 1, 2, 3 are set and stored in the XX (I,J) and YY (I,J) arrays where I is the plane number and J is 1 or 2 representing the end points. The subroutines VFAC and SRIPF are called to define geometric view factors and area-radiative interchange factors, ASF (I,J). From these factor Adiation conductors are formed from the following expression

$$K_{1j} = A_1 \partial T_{1j} \circ (T_1^2 + T_j^2) (T_1 + T_j)$$
.

where c = Stefan Boltzman Constant

The equivalent network for the total heat transfer from surface 1 to 2 is shown in Figure 4.9.

Fig. 4.9 Corrugated Panel Equivalent Network

The three conductors in series K, K, K, and K, 'R, 'R' represent the paths

through the upper and lower surfaces, a contact conductance which for the present time is set to 10° times the area, and the conduction path through the corrugated section. The expression for the three conductors in series is used to form the conductors from node 1 to 3 and 2 to 3 as shown below

$$C1 = \frac{K_1 K_2 K_3}{K_1 K_2 + K_1 K_3 + K_2 K_3}$$

and

$$C2 = \frac{K_1^t K_2^t K_3^t}{K_1^t K_2^t + K_1^t K_3^t + K_2^t K_3^t}.$$

If we represent the radiation paths from 1 to 3 as

$$C4 = A_1 (T_1^2 + T_3^2) (T_1 + T_3)$$

and 2 to 3 as

$$C5 = A_1 \bigcap_{1=3}^{6} \sigma (T_2^2 + T_3^2) (T_2 + T_3)$$

we can iterate on the temperature at 3 using the following expression.

$$T_3^{n+1} = (1 - \beta) T_3^n + \beta \cdot \left(\frac{T_1C1 + T_2C2 + T_1C4 + T_2C5}{C1 + C2 + C4 + C5} \right)$$

Convergence is obtained when

$$\frac{T_3^{n+1} - T_3^n}{T_3^{n+1}} < \varepsilon - .001$$

where g is the imput parameter TOL set to a default value of .001.

ORIGINAL PERSON OF POOR QUALITY.

When the temperature T_a is suived for the total heat transfer per unit area of panel is computed

$$Q = \frac{|T_1 - T_3| \cdot (C1 + C4)}{P2}$$

and the equivalent conductivity is found from

$$XK = \frac{Q}{T_1 - T_2}.$$

An example case for an aluminum corrugated panel and the equivalent thermal conductance is shown in Figure 4.10.

The thermal capacitance is computed from the mass of the structure and split in two equal parts assigned to CAP1 and CAP2. Total mass is found and stored in XM.

4.21 SUBROUTINE HONEY

Subroutine HONEY determines the effective thermal conductivity, capacity and mass of a honeycomb core sandwiched between two layers. The geometric definition and material identifiers are contained in the named common GAP. Temperatures of the outer layers T1 and T2 are also found in GAP. Cell dimensions are given by TH, the overall height, and H the distance from one flat side to the other for a hexagonal cell. The distance D is the pitch distance shown in Figure 4.11.

Fig. 4.11 Honeycomb Cell Dimensions

ORIGINAL PAGE IS OF POOR QUALITY

Fig. 4.10 Corrugated Structure Effective Thermal Conductance

ORIGINAL PACE IS

The number of cells per unit area, the number of cell walls, and the volume of the material makin up the atructure are computed.

Heat transfer through the honeycomb is assumed to be by conduction through the core and radiation within each cell. Each cell is assumed to have six equal walls which is shown in Figure 4.12.

Fig. 4.12 Honeycomb Cell Model

Temperatures at 1 and 2, T1 and T2 respectively, are given. Temperatuare at 3 is solved by relaxation. Radiation from nodes 1 to 2, 1 to 3 and 3 to 2 is computed by assuming a view factor of .1 from surface 1 to 2 and .9 from 1 to 3. This is done in lieu of using the crossed string method (subroutine VFAC) since this is a three dimensional configuration. Changes in the view factors can be made easily to reflect cell size and honeycomb thickness. Typical view factors as a function of cell size and honeycomb thickness are provided in Table 4.4.

ORIGINAL PAGE IS OF POOR QUALITY.

Table 4.4 View Factors From Top And Sides To Bottom Of Honeycomb Cell For Use In Subroutine HONEY

The equivalent electrical network is shown in Figure 4,13

Fig. 4.13 Equivalent Network For Honeycomb

This network describes the heat transfer path between the upper and lower surfaces. Equivalent conductors for the conduction paths are determined from

$$XC1 = \frac{C1 \cdot CONK \cdot C3}{C1 \cdot CONK + C3 \cdot CONK + C1 \cdot C3}$$

and

$$xc2 = \frac{c2 \cdot conk \cdot c3}{c2 \cdot conk + c2 \cdot c3}$$

where CONK is the contact conductance between the core and the outer surfaces, currently set to 10° BTU/Ft -Sec-°F. R1, R2, and R3 are computed using the three temperatures and the view factors. Finally, the temperature at 3 is found by relaxation using the formula

$$T_3^{n+1} = (1 - \beta) T_3^n + \beta \frac{(T1 \cdot (XC1 + R1) + T2 \cdot (XC2 + R2))}{XC1 + R1 + XC2 + R2}$$

In the expression above, β is the relaxation factor usually set to .5 in the input. Convergence is rapid and occurs when

$$\frac{T_{g}^{n+1}-T_{g}^{n}}{T_{g}^{n+1}} < TOL - .001 .$$

Total heat transfer is computed from the conductor values and three known temperatures. Equivalent conductance is then found by dividing by the temperature difference T_1-T_2 . An example case is shown in Figure 4.14 for an all aluminum honeycomb structure. Capacitance CAP1 and CAP2 is found in addition to the mass of the structure and stored in XM.

4.22 SUBROUTINE RGAP

Subroutine RGAP computes the equivalent conductor value through a radiation gap. This model also includes the thermal conductance of the upper and lower surfaces. The thermal model of the radiation gap used is shown in Figure 4.15.

Fig. 4.15 Network For Radiation Gap Calculation

ORIGINAL FLORE TA

Fig. 4.14 Honeycomb Effective Thermal Conductance

ORIGINAL PAGE IS OF POOR QUALITY

The temperatures at A and B are computed from the known temperatures at 1 and 2. All geometric and material parameters are passed to RGAP through the named common GAP. The radiant interchange factor between the two surfaces is assumed to be that of two infinite plates and is found from the expression below

$$\frac{1}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1}$$

An iteration procedure is used to find the temperatures at A and B given the temperatures at 1 and 2. T1 and T2 respectively. The conductors YK1 and YK2 are found from the conductivity and the thicknesses TH1 and TH2. YK3 is a radiation conductor found from the following expression:

$$Yk3 = 6 \frac{1}{A-B} (TA^2 + TB^2) (TA + TB)$$

The relaxation algorithm used to find TA and TB is as follows

$$TA^{n+1} = (1 - \beta) TA^n + \beta \frac{T1 - YK1 + TB^n - YK3^n}{YK1 + YK3}$$

and

$$TB^{n+1} = (1 + \beta) TB^n + \beta \frac{T2 \cdot YK2 + TA^n \cdot YK3^n}{YK2 + YK3}$$

Convergence is found after

$$\frac{TA^{n+1}-TA^n}{TA^n} \quad AND \quad \frac{TB^{n+1}-TB^n}{TB^n} < \epsilon \text{ .001}$$

Equivalent thermal conductivity is found once TA and TB are solved by

An example case is shown in Figure 4.16.

Finally the mass, IM, and capacitance, CAP1 and CAP2, are computed.

4.23 SUBROUTINE STAND

This subroutine computes the equivalent thermal conductance, capacitance and mass of a structure consisting of a standoff section and two outer surfaces. Heat transfer is assumed to be by conduction and radiation through the panel. Consider the small section of the Z-standoff panel shown in Figure 4.17.

Fig. 4.17 2-Standoff Configuration

We choose a single enclosure bounded by two standoffs' mid-plane and assign three nodes to the four surfaces, node 3 being common to the standoffs. The geometric and material parameters are contained in the named common, GAP. The three material thicknesses are TH1, TH2, and TH3 while the material identifiers are M1, M2, and M3. Overall height is TH, the pitch is P and the flange width

ORIGINAL PAGE ET OF POOR QUALITY

Fig. 4.16 Radiation Gap Effective Thermal Conductancé

is H. Temperatures at 1 and 2 are T1 and T2. These parameters are assigned their respective variable names in subroutine LOAD which is called immediately before STAND is called. Temperature at 3 is unknown, but given the temperatures at 1 and 2, geometric and property data, the temperature at 3 can be solved for by iteration. The heat transfer paths are conduction from the upper and lower surfaces through each of the standoffs, since the model is asymmetrical about a midplane, and radiation from node 1 to 2, and from 1 to 3 to 2. The radiative enclosure for the upper lower surfaces, and standoffs consists of four planes shown in Figure 4.18.

Fig. 4.18 Radiation Enclosure Model For Z-Standoff

The coordinates of the planes making up the enclosure are computed and stored in the XX(I,J) and YY(I,J) arrays where I is the plane number and J is 1 or 2 representing the end points. The subroutines VFAC and SRIPF are called to define geometric view factors and area-interchange factors ASF(I,J).

From these factors, radiation conductors are formed from the following expression

$$K_{ij} = A_i G_{ij}^2 \sigma (T_i^2 + T_j^2) (T_i + T_j)$$

The equivalent network for the total heat transfer from surface 1 to 2 is shown in Figure 4.19.

Fig. 4.19 Equivalent Network For Z-Standoff

Equivalent series conductors are formed, C1, C2, C3 and C4 which include a contact conductance and the conductance of the plate and standoffs. Radiation conductors R1, R2, R3, R4, and R5 complete the network. The expression for the equivalent conductor C1 is

$$c1 = \frac{c1A \cdot c1B \cdot c1c}{c1A \cdot c1B + c1B \cdot c1c + c1A \cdot c1c}$$

Similar expressions are used for C2, C3 and C4. The temperature at 3 is found by relaxation using the following expression

$$T_3^{n+1} = (1 - \beta) T_3^n + \beta \left(\frac{T1 (R1 + R2 + C1 + C3) + T2 (C2 + R3 + C4 + R4)}{R1 + R2 + R3 + R4 + C1 + C2 + C3 + C4} \right)$$

Convergence is obtained when

ORIGINAL PACE IN OF POOR QUALITY

$$\frac{T_{g}^{n+1} - T_{g}^{n}}{T_{q}^{n+1}} < \varepsilon \sim .001$$

where is the input parameter TOL set to a default value of .001.

The total heat transfer per unit of panel is then found from

$$Q = \frac{(T1 - T2) \cdot R5 + (T1 - T3) \cdot (C2 + C4 + R3 + R4)}{P}$$

and the equivalent thermal conductance is found from

$$XK = \frac{Q}{T1 - T2}.$$

An example of the equivalent thermal conductance calculation is shown in Figure 4.20.

The thermal capacitance is found and stored in CAP1 and CAP2. Total mass is found and stored in XM.

4.24 SUBROUTINE THINS

Subroutine THINS computes the capacitance and mass of a material with infinite thermal conductance. CAP1 and CAP2 each contain one half the total thermal capacitance of the plate and XM contains the mass. The equivalent thermal conductance is set to 10¹⁶, while never used in computing temperatures, it is used as a flag to indicate presence of infinitely conducting plate.

ORIGINAL PLANTS.
OF POOR QUALITY

Fig. 4.20 Z-Standoff Effective Thermal Conductance

Section 5.0

INFUT

Data required for operation of EXITS comes from several sources. Data for the particular case, control parameters, geometry etc. comes from the interactive imput. Material properties are on a property file and identified with a material number. The environment comes from a file created by LANMIN which is compatible with the EXITS input format. If the structural configuration has been modeled previously and saved on the structure file, the user can skip the structural modeling questions during the interactive input, and call in data from the structure file to describe the detail of the thermal protection system being investigated. A user may wish to study the effects of changing certain trajectory parameters, in such case he would create several LANMIN input files. He would then run the EXITS code at each body point being investigated saving the structure by assigning it a structure number and saving it on a structure file. The input for the subsequent trajectory cases would be greatly simplified since the geometry and materials have been defined and stored on a structures file. Several of these structures files may be created, each file defining the thermal protection system at selected body point locations on a particular vehicle. With these data defined, one can easily compare for thermal protection systems candidate vehicles'.

The following discussion presents examples and descriptions of the input data required for input in the EXITS code. First we have the data defining the environment generated and stored by LANMIN. Next the material properties file, which presently contains some twenty eight materials and can be added to or edited as the user chooses, is presented. Thirdly, an example of the file generated by EXITS which saves the thermal protection system structural and geome-

[十]

tric definition and is called the structures file.

Two examples of the interactive input which demonstrates use of all of the options and the seven structure types now available in EXITS are presented. A description of the output for these cases is given in Section VI.

5.1 LANMIN GENERATED ENVIRONMENT FILE

The environment for the body point under investigation is generated by the LANMIN code and stored as a data file. The EXITS code reads this data from Unit 7 in subroutine DATA2 and stores it in arrays. A body point description and body point number is read from this file by the following statement

READ (7,700, END=1000) DESCRP, IBP

700 FORMAT(A72, 15)

until the body point specified in the interactive input is found. The environment is then read immediately following this record by the read statement shown below

READ(7,701)TM1(IC), HC1(IC), HAW1(IC), PRES1(IC)

701 FORMAT(2X,FG. 1,39X,E10.3,2X,E10.3,3GX,E10.3).

An example of the LANMIN input file is shown in Table 5.1. As can be seen, only the time, enthalpy based heat transfer coefficient, adiabatic wall enthalpy, and pressure is read. Data may be read in either the English units or Metric units shown in Table 5.2. Trajectory points are read until a negative time point is encountered.

ORIGINAL PREE SO OF POOR QUALITY

į	•	15-1	SFS-1 REENTRY	IRAJ.	4	B. REF.	•		B.P. NO.	77	
VEL. MACH ANGLE I	ANGLE ATTACK	_	-	PLYNOLDS NO. /F T	LBM/SF1-S	REC ENTHALPY BFU/LOM	PAR ELUIL Des F	HEAT RATE	HEAT LOAD ETHEST	PRESSIRE	FLOW
			•								
			•	1.0.6	500	• 113 • UUV	3080	100-209	- ZG 8-D01	125-101	T. W.
מבים ארים	77.7			120.	A11-112.	570-571:	25101	100-1-60		101-102.	TO THE
21.85 41.25	*1.25	Ī	5	• • 28• 30•	•172-00¢	112+005	113.5	131-000	. 172+0ul	145-1711	TOFO
23.34 #1.25	*1.23	Ī	• 16	700+	•170-0L	11.2+005	185.2	189-000	-126-na.2	. 61 v-Eul	PART
24.21 41.PS	41.05	Ť	. 31	709+9	.25t-004	.112-065	462.6	.269-80D	192-002	THE TOU	\$ \$ 17.4
25.23 4C.63	46.63	Ī	.0.	++ 0.62	.363-0us	.112+005		.390+0nm	-289+EUZ	.199.Teum	D ADE
26.14 .L.S.	* ***		.124	103	.537-Cut	.112.065		-576-000	-433-GaZ	378-T-M	20.07
	7 *C.63		51	+ i.0 3	.8ú1-06*	112+065		.6.0-000	- C+ R+ ULZ	-731 - TAD	TOPE
27.62 +1.24	41.24		+> 08·	.00.	·1.6.005	.112+005	964.5	.129-001	971+052	. 104 - Tul	DAFE
27.89 41.89	41.89		. 98Q.	003	119-063	.113. _{0.5}		.193.CB1	11.5.043	-Zan-Fra	TORC
<7.86 4L, 52	41,52		.174.	P U1	.253-003	.112+0uS	1180.8	.271-601	-213-1103	- 47 1 - F. D.	AFE
27.62	39.53		.86**	*17	.253-EL3	•111+00S	1178.0	.269+001	-28C-nu3	. 775-Ful	4
27.04 MC-26	46.26		•***	55	.301-003	.111+0US	1246.5	.319-001	. 360-623	. 113-EU2	1.4.4
26.45 40.93	*C.93		.511.	*01	.345-603	.110,015	13uC.2	.363,001	120-121-	.151-Tuz	H 6 H
26.07 *1.50	41.50		.586+	*35	.371-0 ₀ 3	.109•005	1327.8	100-191	. Se Beffus	-178.TU2	1 4.75
	41.16		· 0 · 0 ·	Ş	• 38A-0ū3	.108+0LS	1341.2	.399.001	.647+023	-194-1762	1.27
4.5.46 4C.16	*C*10		.000.	۳.	.397-063	•106•005	1344.3	. 402-501	. 746.Bus	. 200 · CL 7	1.8.1
45.21 39.66	39.66	Ť	,726.	200	. *u*-063	.104+06c	1344.5	100-20	. 84 A+ CC3	-2n6-tro2	***
24.96 39.2E	39.26	Ī	,764.	É	.411-003	.1C3.0us		100-20	. ca 0* Bu3	-212-fa2	#
3428-1 24-70 39-49 .795-604	39.89	•	195.	707	**************************************	.161+805		• • 03 • 001	•105 • 3b.	.222-ED2	1.49
30.64	30.64	•	,627	a Son a	£70-974*	*00+146*		. 403,001	1115-nu	23, -[7]2	1.47
24.29 30.00	30.00	•	140	*47+60*	.4.9-063	.987.0ut		. * 42-601	.121-554	235-102	LA FR.
20.14 50.27	. 50.27	•	199	+00+	.432-063	*017*110*			.126+ms	-258-TD2	-
•	39.11	•	667	687.0C*	.436-003	*00.196.	1342.8		-135-CER	-241-DD2	17
							1				

The state of the s

Example Of LAWAIN Generated Environment For Body Point 12 Table 5.1

* Headers are written for LAWMIN printed output but are omitted in file generated for EXITS input.

QUANTITY	english	METRIC
TIME	seconds	SECONDS
film Coeppicient	LBM. FT -SEC	Rg. M -SEC.
adiabatic Wall Enthalpy	etu Lbm.	joules Kg.
Pressure	LBF.	NEWTONS 2

Table 5.2 LANMIN Generated Environment Units

5.2 MATERIAL PROPERTIES FILE

The thermophysical properties file is read by subroutine DATA1 which finds the specified material identification number. Table 5.3, and then reads the four or six property tables for a non-ablator or ablator respectively. The present set of property data are contained in the file INP1.F T and read by Unit 8 and are shown in Table 5.4. Property data are usually a function of temperature only, however, the option exits for density, specific heat, thermal conductivity, and emissivity to be a function of both temperature and pressure. Two additional properties, sublimation temperture, and heat of ablation are added for the ablation materials. Both of these properties are input as a function of pressure.

Referring to Table 5.4, we see that the present property file contains twenty eight materials used in thermal protection system design. Material identification numbers are given as the first entry of the header card for the density table. The header card to each table is read by the following statement

READ(8,701)RD, JD, TEST1, TEST2, TMPMXA
701 FORMAT(19,2%, 15,4%, A10,1%, A13, E10.0)

ORIGINAL PART IN OF POOR QUALITY

MATERIAL LIST

-		
ſ	1.	Aluminum 7075-T6
l	2.	Cork
Ì	3,	LRSI Conting
I		HRSI Coating
١	5.	LI-900 (Bivariate)
l	6.	
١	7.	FRSI Nomez Felt (Bivariate)
I	8.	SIP RTV 560
1		Titanium
١	10.	Coated Columbium
l		Copper
I		Beryllium
١		Zirconia
١		Molybdenum
١	13.	RENE 41
١	16.	Micro Quartz Felt Insulation
ı		INCONEL 617
١		RCC
		Q-Felt 108 (Bivariate)
1		Tantalum
ı		Tungsten
1		INCONEL X 750
		L 605 Cobalt
		HAYNES 25
		MIN-E 1301
		LI 2200 (Bivariate)
		Nylon Phenolic (ABLATOR)
		B-Stage Cork (ABLATOR)
	29.	MSA-1 (ABLATOR)
	47 ·	WOU_* (UDIUIAN)

Table 5.3 Material Identifier Numbers

```
AL. 7075-TA DENSITY
1
                                      660.0
       0.0
                  175.
     10000.
                  175.
       7
             AL.7075-TO SPECIFIC HEAT
                                                                        ORIGINAL DALL !
       0.0
                   .170
                                                                        OF POOR QUALITY
     310.0
                   .170
      460.0
                   .195
     660.0
                   .210
     1320.0
                   .275
    1460.0
                   .275
    10000.
                   .275
            AL.7075-TA CONDUCTIVITY
1.4006-2
       0.0
     240.0
               1.400E-2
     460.0
               2.000E-2
     760.0
               2.500E-2
     660.Ö
               2.700E-2
     960.0
               2.900E-2
       2
            AL. 7075-T6 EMISSIVITY
       0.0
                  .12
    10000.
                  .12
2
       2
            CORK
                       DENSITY
                                      860.0
       0.0
                10.
    10000.
                10.
       2
            CORK
                       SPECIFIC HEAT
       0.0
                  .04
    10000.
                  .04
       2
                       CONDUCTIVITY
            CORK
       0.0
                6.90E-6
                4.90E-6
    10000.
       2
            CORK
                       ENISSIVITY
       0.0
                  ë.
    10000.
                  8.
3
       2
            LRSI COAT
                       DENSITY
                                     1660.0
       0.0
                104.0
    10000.
                104.0
       9
            LRSI COAT
                       SPECIFIC HEAT
       0.0
                  .15
     210.0
                  .15
     310.0
                  .17
     460.0
                  .19
     710.0
                  .219
     960.0
                  .240
    1460.0
                  .265
    2460.0
                  .345
    3460.0
                  .390
      9
           LRSI COAT COMBUCTIVITY
      0.0
               1.181E-4
    210.0
               1.181E-4
    310.0
               1.250E-4
    460.0
               1.35年4
    710.0
              1.52在-4
    960.0
               1.6/在-4
   1450.0
               1.956E-4
   2460.C
              2.45E-4
   3460.0
              3.27胜-4
```

Table 5.4 Thermophysical Material Properties File

```
LRSI COAT EMISSIVITY
                                                            ORIGINAL PARCE LET
  0.0
              .80
                                                            OF POOR QUALITY
       .80
HRS1 COAT
10000.
                                 2760.0
                  DENSITY
  2
            104.0
  0.0
            104.0
10000.
       HRS1 COAT
                   SPECIFIC HEAT
  0.0
              .15
 210.0
              .15
 310.0
              .17
 460.0
710.0
              .19
 960.0
              .240
              . 285
1460.0
2460.0
              .345
        .390
HRSI COAT COMBUCTIVITY
3460.0
   9
   0.0
           1.181E-4
 210.0
           1.181E-4
           1.290E-4
 310.0
           1.353E-4
 460.0
           1.528E-4
 710.0
           1.67BE-4
 960.0
           1.956E-4
 1460.0
 2460.0
            2.493E-4
 3460.0
            3.27E-4
         HRSI COAT ENISSIVITY
    2
               .85
.85
    0.0
 10000.
                                  2760.0
         L1-900
                    DENSITY
    2
    0.0
              9.0
              9.0
 10000.
         LI-900
                    SPECIFIC HEAT
   10
                .070
   0.0
  210.0
               .070
               .105
  310.0
  460.0
               .150
  710.0
                .210
                .252
.268
  960.0
 1460.0
 1960.0
                .300
              .303
 2210.0
 3460.0
```

Table 5.4 (Continued)

ORIGINAL PYCE IS

OF POOR QUALITY

```
LI-900
     15
                     CONDUCTIVITY
     -6.0
                 0.0
                          .21
                                           21.16
                                  2.12
                                                     211.6
                                                             2116.0
      0.0
              1.389E-6 1.389E-6 2.083E-6 4.166E-6 6.060E-6 6.472E-6
    210.0
              1.309E-6 1.389E-6 2.083E-6 4.166E-6 6.060E-6 6.47EE-6
              2.083E-6 2.083E-6 2.777E-6 5.083E-6 6.944E-6 7.638E-6
    460.0
    710.0
              2.555E-6 2.555E-6 3.472E-6 6.250E-6 8.777E-6 9.47在-6
    960.0
              3.472E-6 3.472E-6 4.63BE-6 7.666E-6
                                                   1.111E-5 1.202E-5
              4.861E-6 4.861E-6 6.000E-6 9.027E-6 1.366E-5 1.483E-5
   1210.0
   1460.0
              6.472E-6 6.472E-6 7.639E-6 1.088E-5
                                                    1.667E-5
                                                             1.827E-5
   1710.0
              8.555E-6 8.555E-6 9.722E-6 1.366E-5
                                                   2.014E-5 2.172E-5
   1960.0
              1.155E-5 1.155E-5 1.275E-5 1.714E-5
                                                   2.430E-5 2.616E-5
              1.575E-5 1.575E-5 1.694E-5 2.130E-5 2.944E-5 3.138E-8
   2210.0
              2.039E-5 2.039E-9 2.172E-5 2.616E-9 3.527E-5 3.777E-5
   2460.0
   2760.0
              2.68%-5 2.68%-5 2.63%-5 3.22%-5 4.30%-5 4.63%-5
   2960.0
              3.222E-5 3.22E-5 3.416E-5 3.861E-5 4.972E-5 5.388E-5
    3260.0
              4.277E-5 4.277E-5 4.500E-5 5.000E-5 6.111E-5 6.722E-5
    3460.0
              5.277E-5 5.277E-5 5.444E-5 6.080E-5 7.277E-5 8.059E-5
      2
           LI-900
                     EMISSIVITY
      0.0
                1.0
    10000.
                1.0
           FRSI COAT DENSITY
                                   1160.0
      0.0
               97.0
    10000.
               97.0
      2
           FRSI COAT SPECIFIC HEAT
      0.0
                 .35
    10000.
                 .35
      2
           FRSI COAT CONDUCTIVITY
              5.000E-5
      0.0
              5.000E-5
    10000.
           FRSI COAT EMISSIVITY
      2
      0.0
                 .80
    10000.
                 .80
      2
7
           FRSI NUMEX DENSITY
                                   1160.0
      0.0
                5.4
    10000.
                5.4
           FRSI NOMEX SPECIFIC HEAT
      8
      0.0
                 .300
    210.0
                 .300
    460.0
                 .312
    660.0
                 .320
    760.0
                 .335
    1060.0
                 .345
    1260.0
                 .360
    1460.0
                 .390
```

Table 5.4 (Continued)


```
FREI NOMEX CONDUCTIVITY
 1Ö
 -7.0
            U.0
                      igō.
                               .212
                                        2.116
                                                 21.16
                                                           211.6
                                                                     2114.0
  0.0
          1.80%-6 1.80%-6 1.944E-6 2.22%-6 2.56%-6 2.83%-6
                                                                   3.059E-A
 210.0
          1.805E-6 1.805E-6 1.944E-6 2.222E-6 2.555E-6 2.823E-6 3.055E-6
 460.0
          2.22E-6 2.22E-6 2.916E-6 3.888E-6 4.750E-6 5.550E-6 5.722E-6
560.0
          2.389E-6 2.388E-6 3.333E-6 4.611E-6 5.694E-6 6.611E-6 6.94E-6
 660.0
          2.6395-6 2.6385-6 3.8335-6 5.3885-6 6.6665-6 7.6385-6 6.0555-6
760.0
          2.833E-6 2.833E-6 4.305E-6 6.111E-5 7.639E-6
                                                         8.944E-6 9.861E-6
660.0
          3.055E-6 3.055E-6 4.722E-6 6.944E-6 8.777E-6
                                                         1.027E-5 1.041E-5
1060.0
          3.611E-6 3.611E-6 5.750E-6 8.750E-6 1.130E-5 1.319E-5 1.358E-5
1260.0
          4.166E-6 4.166E-6 6.944E-6 1.055E-9 1.389E-9 1.689E-8 1.722E-5
1460.0
          4.861E-6 4.861E-6 8.333E-6 1.283E-5 1.706E-5 2.192E-5 2.208E-5
  2
       FRSI NOVEK ENISSIVITY
   0.0
            1.0
10000.
            1.0
  2
       SIP-RTV360 DENSITY
                               960.0
  0.0
          89.0
10000.
          88.0
       SIP-RTV960 SPECIFIC HEAT
  9
  0.0
            .273
 320.0
            .273
 360.0
            .270
410.0
            . 260
 460.0
            .265
 560.0
            .295
            .300
 660.0
840.0
            .340
1000.0
            .340
       SIP-RTVS60 CONDUCTIVITY
  0.0.
          6.472E-5
 260.0
          6.47胜-5
 360.0
          6.944E-5
 460.0
          6.80%-5
440.0
          5.55%-5
860.0
          4.52E-5
960.0
          4.055E-5
  2
       SIP-RTV360 EMISSIVITY
  0.0
            1.0
10000.
             1.0
  2
       TITANIUM
                 DENSITY
                               1260.0
  0.0
           512.0
```

10000.

512.0

ORIGINAL PAGE IN OF POOR QUALITY


```
TITANIUM SPECIFIC NEAT
       0.0
                   .096
     260.0
                   .094
     460.0
                   . 123
                                                                ORIGINAL PAGE 19
     860.0
                   .146
                                                                OF POOR QUALITY
    1660.0
                   .160
    10000.
                   .140
             TITANIUM CONDUCTIVITY
       5
               1.2006-3
       0.0
     530.0
                1.200E-3
     960.0
                1.500E-3
    1460.0
               2.800E-3
     10000.
               2.800E-3
       2
             TITANIUM EMISSIVITY
       ď.Ď
                   .12
     10000.
                   .12
10
       2
             CTD.COLUMB DENSITY
                                     2960.0
       0.0
                562.0
     10000.
                 $62.0
             CTD.COLUMB SPECIFIC HEAT
       å
                   .059
       0.0
     460.0
                   .099
     660.0
                   .061
     1060.0
                   .065
     1460.0
                   .065
     10000.
                   .065
       ò
             CTD. COLUMB CONDUCTIVITY
       0.0
                4.40E-3
     930.0
                4.40E-3
     960.0
                 6.10E-3
     1460.0
                 7.30E-3
    2460.0
                8.00E-3
    10000.
                8.00E-3
             CTD.COLUMB EMISSIVITY
       0.0
                   .19
    3160.0
                   .19
     4060.0
                   .24
     10000.
                   .24
11
       2
             COPPER
                        DENSITY
                                      1560.0
                555.0
        0.0
     10000.
                 555.0
       8
             COPPER
                       SPECIFIC HEAT
       0.0
                 .0001
      60.0
                 .0400
     460.0
                 .088
```

.100

.110

.120

.130

.130

960.0 1460.0

1960.0

2460.0

10000.

Table 5.4 (Continued)

```
(
```

```
COPPER
                       CONDUCTIVITY
                                                                       ORIGINAL LYNES IS
                .070
      0.0
                                                                       OF POOR QUALITY
                .070
     0.06
                .056
     460.0
                .061
     960.0
                .058
    1460.0
                 .057
    1960.0
                 .051
    2460.0
    10000.
                 .051
             COPPER
                        EMISSIVITY
       2
       Ö.Ò
                 .78
     10000.
                 .78
                                      1660.0
             BERYLLIUM DENSITY
12
       2
        d.ŏ
                116.0
     10000.
                116.0
             BERYLLIUM SPECIFIC HEAT
       10
        0.0
                 .000
                 .001
      160.0
      360.0
                 .20
      460.0
                 .35
      940.0
                  .58
     1460.0
                  .68
     1960.0
                  .75
     2460.0
                  .84
     2960.0
                  .86
     3460.0
                  .86
             BERYLLIUM CONDUCTIVITY
        0.0
                 38.89E-3
      400.0
460.0
                 38.88E-3
35.00E-3
                 22.22E-3
      960.0
      1460.0
                 17.00E-3
      1960.0
                 14.00E-3
                 12.50E-3
      2460.0
                 12.00E-3
      2940.0
                 12.00E-3
      3460.0
              BERYLLIUM ENISSIVITY
         2
         0.0
                   .15
      10000.
                   .15
                         DENSITY
                                        3360.0
         2
              ZIRČUNIA
 13
         0.0
                 349.4
      10000.
                 349.4
              ZIRCONIA
                        SPECIFIC HEAT
         ė
         0.0
                  .115
       460.0
                  .115
       960.0
                  .140
      1460.0
                  .148
       2460.9
                  .153
       3960.0
                  .155
               ZIRČONIA CONDUCTIVITY
                  2.360E-4
          0.0
                  2.360E-4
        460.0
                  2.560E-4
        960.0
                  2.790E-4
       1460.0
       2460.0
                  3.476E-4
       3960.0
                  3.41Œ-4
```

Table 5.4 (Continued)

```
ZIRCONIA EMISSIVITY
         0.0
                 .20
      10000.
                 .20
 14
              HOLYBDENUM DENSITY
         2
                                       2860.0
         0.0
                 640.0
                                                                      ORIGINAL PAGE IS
      10000.
                 640.0
                                                                     OF POOR QUALITY
        7
             HOLYBDENUN SPECIFIC HEAT
        Ö.Ö
                 .052
      260.0
                 .052
      460.0
                 .060
      1460.0
                 .067
      2460.0
                 .080
      4960.0
                 .110
     7460.0
                 .110
             HOLYBOENUM CONDUCTIVITY
                 .0244
      260.0
                 .0244
      460.0
                .0218
     1460.0
                .0200
     2460.0
                .0160
     4960.0
                .0160
     7460.0
                .0119
        2
             MOLYBDERUM EMISSIVITY
        0.0
                .20
     10000.
                .20
15
        2
             RÉNE 41
                        DENSITY
                                      2060.0
        0.0
                512.0
     10000.
                512.0
        5
             RENE 41
                        SPECIFIC HEAT
        0.0
                .059
       60.0
                .059
      460.0
                .059
     2860.0
                .230
     10000.
                .230
        5
             RENE 41
                        CONDUCTIVITY
       0.0
                .0014
      530.0
                .0014
      960.0
                .0022
     1460.0
                .0029
     2460.0
                .0042
       2
            RENE 41
                       EMISSIVITY
       0.0
                .20
     10000.
                .20
16
       2
            MICRO BATZ DENSITY
                                     1460.0
       0.0
               3.5
    10000.
               3.5
            MICRO ORTZ SPECIFIC HEAT
       0.0
               .186
     535.0
               .186
     760.0
               .2173
     860.0
               .2312
     890.0
               .2340
    1260.0
               .26136
    1380.0
               .270
    1460.0
               .27227
    2260.0
               .2750
```

```
(<del>+</del>)
```



```
HICRO ORTZ CONDUCTIVITY
      0.0
               7.2202-6
                                                           ORIGINAL PAGE IS'
               7.220E-6
     535.0
                                                           OF POOR QUALITY
     760.0
               7.639E-6
     0.048
               9.028E-6
               9.35Æ-6
     690.0
    1240.0
               1.551E-5
    1380.0
               1.77%-5
    1460.0
               1.921E-9
    2260.0
               3.970E-S
            MICRO ORTI EMISSIVITY
       2
       0.0
               .89
     10000.
                .89
17
             INCOIL 617 DENSITY
                                     2260.0
        Õ.O
               521.86
     10000.
               521.66
             INCOME 617 SPECIFIC HEAT
       12
                .100
       0.0
      538.0
                .100
     660.0
                .104
                .111
     1060.0
                .117
     1460.0
                .131
                .137
     1660.0
     1860.0
                .144
     2060.0
                .150
     2260.0
                .157
     2460.0.
                .163
     10000.
                .163
             INCOME 617 CONDUCTIVITY
       12
        0.0
                2.174E-3.
      538.0
                2.17&E-3
      660.0
                2.3386-3
      860.0
                2.616E-3
     1060.0
                2.894E-3
     1460.0
                E-3944.E
                3.727E-3
     1440.0
     1860.0
                4.005E-3
     2060.0
                4.282E-3
     2250.0
                 4.560E-3
                 4.83E-3
     2460.0
      10000.
                 4.836E-3
              INCOME 617 EMISSIVITY
        2
         0.0
                  .15
      10000.
                  .15
                                       3000.0
              RCC
 18
                         PENSITY
         2
         0.0
                  103.7
      10000.
                  103.7
```

```
11
             ŔČĊ
                         SPECIFIC HEAT
        0.0
                  .080
                  .000
      160.0
      360.0
                                                              ORIGINAL PAGE ES
      460.0
                  .170
                                                              OF POOR QUALITY
      960.0
                  .242
     1460.0
     1960.0
                  .330
     2460.0
2960.0
                  .360
.390
     3450.0
10000.
                  .420
                  .420
       11
                         CONDUCTIVITY
        0.0
                1.85E-4
      160.0
                 1.65年-4
      460.0
                 5.324E-4
      660.0
      860.0
                 8.10至-4
     1060.0
                8.796E-4
     1460.0
2160.0
                9.7225-4
     2660.0
                 9.722E-4
     3360.0
                 9.491E-4
     10000.
                 9.491E-4
        B
             RCC
                         ENISSIVITY
        0.0
      860.0
                  8.
     1260.0
     1760.0
     2260.0
                  .885
     2560.0
                  .88
     3460.0
                  .84
     10000.
                  .84
19
             @-FELT 108 DENSITY
                                        1160.0
         0.0
                  4.0
      10000.
                  4.0
       10
              G-FELT 108 SPECIFIC HEAT
        0.0
                  .20
       6.086
                  .20
       760.0
                  .21
                  .24
       960.0
      1160.0
                  .26
      1460.0
                  .27
     1660.0
                  .28
      1860.0
                  .29
     2060.0
10000.
                  .30
```

Table 5.4 (Continued)

```
(A)
```

```
O-FELT 100 CONDUCTIVITY
       -2.0
                 21.16
                          2116.0
                3.700E-6 6.010E-6
        0.0
                                                                 ORIGINAL PASS TO
      660.0
                3.706-6 6.018E-6
                                                                OF POOR QUALITY
      765.0
                4.600E-6 6.944E-6
      960.0
                6.7006-6 9.029E-6
                9.020E-6 1.157E-9
     1160.0
     1460.0
                1.203E-5 1.574E-5
     1660.0
1860.0
                1.4356-5 1.8526-5
                1.713E-5 2.129E-5
     2060.0
     10000.
                1.713E-5 2.407E-5
             G-FELT 100 EXISSIVITY
        0.0
                 .88
      660.0
                 .88
     1160.0
                 .70
                 .65
     1460.0
     1660.0
                 .60
     100004
                 .60
        2
             TANTALUN
                        DENSITY
                                      4460.0
        0.0
                1034.8
     10000.
                1035.8
             TANTALUM SPECIFIC HEAT
        6
        0.0
                .0324
      260.0
                .0326
     460.0
                .0331
     1460.0
                .0356
     2960.0
                .0394
     3460.0
                .0410
     10000.
                .0410
       10
             TANTALUH
                       CONDUCTIVITY
       0.0
                8.750E-3
     260.0
                8.750E-3
     1000.0
                1.02/E-2
     1440.0
                1.067E-2
     2160.0
                1.170E-2
     2520.0
                1.210E-2
                1.230E-2
     2820.0
     3180.0
                1.270E-2
     3600.0
                1.29%-2
     10000.
                1.295E-2
        2
             TANTALUM ENISSIVITY
        0.0
                 .20
     10000.
                 .20
21
        2
             TUNCSTEN
                       DENSITY
                                      4460.0
        0.0
                1204.4
     10000.
                1204.4
             TUNGSTEN
       5
                       SPECIFIC HEAT
       0.0
                .0325
     460.0
                .0325
    5460.0
                .0440
                .0470
     7460.0
     10000.
                .0470
```

```
\odot
```

```
TUNGSTEN CONDUCTIVITY
         0.0
                  1.60E-2
       460.0
                  1.60E-2
                                                        ORIGINAL PAGE IS
      2460.0
                  1.256-2
                                                        OF POOR QUALITY
      3460.0
                  1.106-2
      4460,0
                  9.50E-3
      4960.0
                  9.406-3
      10000.
                  9.40E-3
         2
              TUNGSTEN
                         EMISSIVITY
         0.0
                  .066
      10000.
                  .046
 22
         2
              INCOMENTS DENSITY
                                       2260.0
                  531.3
         0.0
      10000.
                  531.3
              INCONLX750 SPECIFIC HEAT
         á
         0.0
                  .080
      260.0
                  .080
       460.0
                  .075
      1460.0
                  .136
      2460.0
                  .170
      10000.
                  .170
        á
              INCONLX750 COMBUCTIVITY
        0.0
                1.900E-3
      530.0
                1.900E-3
      960.0
                2.600E-3
     1460.0
                 3.400E-3
     2460.0
                 4.800E-3
     10000.
                 4.800E-3
             INCONLX750 EMISSIVITY
        0.0
                 .60
     1010.0
                 .60
     2035.0
                .75
     10000.
                 .75
23
        2
             LAGS COBLY DENSITY
                                       2260.0
        0.0
                569.0
     10000.
                569.0
             L605 COBLT SPECIFIC HEAT
        0.0
                 .0965
      160.0
                .0965
     2960.0
                .1640
     10000.
                .1640
             LACE COBLY COMMUNITY
        á
        0.0
                 1.50E-3
      530.0
                 1.50E-3
      960.0
                 2.30E-3
     1460.0
                 3.10E-3
     2460.0
                 4.90E-3
     10000.
                 4.90E-3
        2
             LAOS COBLT ENISSIVITY
        0.0
                 .20
     10000.
                 .20
24
       2
             HAYNES 25 DENETTY
                                      2460.0
        0.0
                 570.0
     10000.
                 570.0
```

Table 5.4 (Continued)

```
ORIGINAL PAGE IS
            MAYNES 25 SPECIFIC HEAT
                                                             OF POOR QUALITY
       0.0
                .12
    10000.
                .12
            HAYNES 25 CONDUCTIVITY
       Š
       0.0
                1.3E-2
     460.0
                1.39E-2
     1460.0
                3.7姓-2
     2260.0
                5.5E-2
     10000.
                5.5E-2
       2
            HAYNES 29 ENISSIVITY
       0.0
                 .78
     10000.
                 .78
       2
25
            MIN-A 1301 DENSITY
                                     1260.0
       Ö.Ö
                 20.0
     10000.
                 20.0
       2
            MIN-K 1301 SPECIFIC HEAT
       0.0
                 .212
     10000.
                 .212
       7
            MIN-A 1301 CONDUCTIVITY
       0.0
               4.639E-6
     160.0
               4.638E-6
     860.0
                4.861E-6
     1060.0
               5.33Œ-6
               5.77E-6
     1260.0
     1460.0
               6.250E-6
     10000.
               6.290E-6
       2
             Min-A 1301 EHISSIVITY
        0.0
                .93
     10000.
                .93
       2
            L1-2200
                       DENSITY
                                     2740.0
        0.0
               22.0
     10000.
                22.0
                       SPECIFIC HEAT
       2
            L1-2200
       0.0
                .19
     10000.
                .30
      15
            L1-2200
                       CONDUCTIVITY
      -6.0
                 0.0
                            .21
                                     2.12
                                               21.16
                                                        211.6
                                                                  2116.
       0.0
                 3.8E-6
                          3.88E-4
                                              7.2年七
                                    4.44E-6
                                                        8.33E-6
      210.0
                 3.68E-6
                          3.88E-6
                                    4.44E-6
                                              7.2生七
                                                        8.332-6
      460.0
                 4.7E-6
                          4.72E-6
                                   6.11E-6
                                              8.61E-6
                                                        9.16E-6
      710.0
                6.11E-6
                          6.11E-6
                                    7.226-6
                                              1.05E-5
                                                        1.30E-5
      960.0
                 6.66E-6
                          6.66E-6
                                              1.11E-5
                                    6.69E-6
                                                        1.55E-5
     1210.0
                8.0至七
                          0.05E-6
                                    1.02E-5
                                              1.2姓号
                                                        1.77E-5
     1460.0
                 9.44E-6
                          9.44E-6
                                    1.19E-5
                                              1.44E-9
                                                        2.09E-5
     1710.0
                1.1至号
                          1.1X-5
                                              1.66E-5
                                    1.39E-5
                                                        2.59E-5
     1960.0
                 1.39E-5
                          1.38E-5
                                    1.63E-5
                                              1.97E-5
                                                        2.94E-5
     2210.0
                 1.66E-9
                          1.66E-5
                                    1.94E-9
                                              2.33E-5
                                                        3.41E-5
                          1.94E-3
     2460.0
                 1.94E-5
                                    2.30E-5
                                              2.77E-5
                                                        3.94E-5
     2760.0
                 2.36E-5
                          2.36E-5
                                    2.7Æ-5
                                              3.33E-5
                                                        4.6E-5
     2760.0
                 2. ME-5
                          2.66E-5
                                    3.1逆-5
                                              3.79E-5
                                                        5.1&E-5
     3260.0
                 3.22-5
                                              4.55E-5
                          3.22E-5
                                    3.7年-5
                                                        6.08E-5
     3460.0
                 3.6X-5
                          3.6Œ-5
                                    4.2年-5
                                              5.25E-5
                                                        6.80E-5
                                                                  7.77E-5
```

```
L1-2200
                        EMISSIVITY
        0.0
                .80
     10000.
                .00
27
        2
             NYLON PHEN DENSITY
                                      6210.0
                                                       ORIGINAL PAGE 18
        0.0
                  94.0
                                                      OF POOR QUALITY
     10000.
                  94.0
             NYLON PHEN SPECIFIC HEAT
        5
        0.0
                  .20
      560.0
                  .21
      660.0
                  . 25
      960.0
                  .275
     10000.
                  .275
        5
             NYLON PHEN CONDUCTIVITY
        0.0
                 1.39E-5
      460.0
                 1.392-5
      660.0
                 1.94E-5
      910.0
                 2.50E-5
     10000.
                 2.50E-5
             MYLON PHEN EXISSIVITY
        0.0
                  .85
     10000.
                  . 85
27
             NYLON PHEN SUBLIM. TEMP
        0.0
                  5670.0
      21.16
                  5670.0
      211.6
                  5880.0
      2116.
                  6210.0
     21160.0
                  4210.0
            NYLON PHEN HEAT-ABLATION
27
        5
        0.0
               11000.0
      21.16
                11000.0
      211.6
                10600.0
      2116.
                9200.0
     21160.
                 9200.0
            B-STG. CORK DENSITY
       2
                                      1220.0
      0.0
                  31.0
    10000.
                  31.
       2
             B-STG: CURN SPECIFIC HT.
      0.0
                  .46
    10000.
                  .46
             8-STB. CORK CONDUCTIVITY
    0.0
                1.11 E-5
    860.0
                1.11 E-5
                3.33 E-6
    1310.0
    10000.0
                3.33 E-4
       2
             8-STG. CORK EMISSIVITY
    0.0
                 8.
    10000.
                 8,
       2
            B-STO.CORK SUB. TEMP
```

Table 5.4 (Continued)

```
1220.
1220.
B-STD. CORN HEAT ABL.
   0.0
   5000.
                7000.
7900.
    5000.
                                                                            ORIGINAL PAGE IN
OF POOR QUALITY
              MSA-1
16.0
                              DENSITY
                                                1090,0
  Ö.Ö
               16.
MSA-1
 10000.
                              SPECIFIC HT.
 0.0
               .26
 550.0
 1080.
 10000.
                HBA-1
                              CONDUCTIVITY
 0.0
                   8.30 E-6
 510.
1100.
10000.
                   0.30 E-6
1.39 E-6
1.39 E-6
                              ENISSIVETY
  0.0
  10000.
               MSA-1
1060.
1060.
                               SUB.TEP
  5000.
               MSA-1
3000.
3000.
                              HEAT-ABL.
  5000.
                END OF FILE
-i
```

where

KD = Material Identifier Number

JD = Number of entries in Table (down the page)

TEST1 - Material Name

TEST2 - Property (Donsity, specific heat, etc.)

TMPMIA - Maximum allowable temperature for material.

(Read on density header card)

The next JD records are then read to load the property into arrays using the following read statement and format.

READ(8,702) (ARD(MR), MR=1,8)

702 FORMAT (5x, 8E10.0).

For a monovariate table, the independent variable is ARD(1) and the dependent variable is ARD(2). For a bivariate table, ARD(1) is the negative of the number of pressure entries, going across the page. The pressure values are stored in ARD(2) through ARD(8).

The next JD records are read by the same read statement. ARD(1) will then be the temperature while ARD(2) through ARD(8) are the properties i. e. conductivity or specific heat.

All property tables must be arranged in a particular order. The first property must be density followed by specific heat, conductivity and emissivity. For a ablator-sublimer material, sublimation temperature, and heat of ablation are added as the fifth and sixth properties. To flag a material as being an oblimer, the material identification number is included on the header

card for the sublimation temperature table. Units for the various properties are given in Table 5.5 and are always used regardless of the units set used in the input.

PROPERTY	UNITS
DENSITY MARIAUM ALLOWABLE TEMPERATURE SPECIFIC HEAT THERMAL CONDUCTIVITY EMISSIVITY SUBLIMATION TEMPERATURE HEIGHT OF ABLATION	LBM./FT.* DEGREES-R BTU/LBM R BTU/Ft-SEC- R DIMENSIONLESS DEGREES-R BTU/LBM.

TABLE 5.5 Material Property Units

5.3 STRUCTURES FILE

The EXITS program will create a file which saves the geometric and material definition of the thermal protection system being analyzed. The user assigns this definition a structure number which is used to identify the structure for later use. By doing this, the user can reevaluate the same thermal protection system under different environment conditions with a much reduced interactive input. The name of the structure file is input during the interactive portion of the input. Structures are added to the file at the bottom or below any structure which already exist in the file. If any of the existing structures have the structure number the user is using to identify the new structure, a message will appear during the interactive input asking for a new identification number. Therefore, each structure in the file will have a distinct structure identification number.

An example of a structure definition is given in Table 5.6 for the demons-

tration cases presented in Section 5.4 and 5.6. No format specifications need to be discussed here since EXITS creates and reads this file exclusively.

The first record gives the identification number, the number of layers, the number of materials per layer and the number of dimensions per layer to define the geometry. The next two lines are a description typed in during the intersective input. The next four lines describe each layer. The first entry gives the layer type. Material types are given in the next three locations. Finally, the next six floating point values define the layer geometry dimensions in feet.

```
TEST CASE STRUCTURE FOR LANGLEY CENTER
ABLATOR SUBLINER - RADIATION GAP - THIN SKIN - 2 STANDOFF
                 0 0.8333334E-01 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
                      0 0.1041667E-01 0.8333334E-02 0.0000000E+00 0.1290000E+00 0.0000000E+00 0.000000E+00
                      0 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.2500000E-01 0.0000000E+00 0.0000000E+00
            17
                      1 0.1166667E-01 0.1500000E-01 0.7916667E-02 0.1666667E+03 0.666667E+00 0.6290000E-01
TEST CASE STRUCTURE FOR LANGLEY CENTER
SLAB - SLAB - HUNEY COMB - CORRUGATED
                      0 0.8333334E-02 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
                      0 0.416667E-01 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
                      1 0.1000000E-01 0.916666E-02 0.7916667E-02 0.6250000E-01 0.0000000E+00 0.2500000E-01
                      9 0.666666E-02 0.666666E-02 0.1000000E-01 0.8333334E-01 0.6666667E-01 0.0000000E+00
ABLATOR SUBLINER
HALF INCH OF CORK
                      0 0.4166667E-V1 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.000000E+00 0.0000000E+00
```

TABLE 5.6 Structure File For Sample Case Given In Section 5.4 And 5.6

ORIGINAL PAGE TO OF POOR QUALITY

5.4_EXAMPLE CASE ONE (ABLATOR, RADIATION GAP, THIN SKIN, 2-STANDOFF)

This first example case configuration is not representative of an actual thermal protection system structure but serves to illustrate the interactive input requirements for four of the structural types. The configuration for this case is shown in Figure 5.1.

Fig. 5.1 Configuration for Test Case Number One

As shown in Figure 5.1, an ablator 1.0 inch thick is placed on top of a columbium sheet .125 inches in thickness. Next we have an aluminum plate .4 inches thick placed over an Inconel 617 sheet .14 inches thick. An aluminum 2-standoff structure separates the Inconel 617 sheet from a columbium backface sheet .18 inches thick. We see that the .4 inch aluminum plate is divided at a depth of .1 inches from the top surface. This is required to define the radiation gap model since a lower surface plate is needed. The thermal resistance in the .1 inch aluminum is included in the radiation gap model and does not effect the time step. The aerothermodynamic environment is located on the file MINIVER.DAT and identified by body point number 3. The structure was saved on the structure file STRUCTURE.FIL which is shown in Table 5.6. Also included in this example is the input required to rerun this case using the structural definition saved on STRUCTURE.FIL. The interactive input is shown in Table 5.7. For the case where this example is rerun using the saved structure, the interactive input is shown in Table 5.8.

ORIGINAL PACE IS OF POOR QUALITY

OF F	Name of input file created by LANIN code.	File mas where structure definitions are stored.	File name where output data is stored.	Time at which thermal response analysis begins.	Time at which thermal response analysis ends.	Time in seconds between printout.	F = Yes, W = No: Control parameters are given in liters 15 through 20 and	will be experimed there.	Number of body points to be run using this set of initial parameters.	Body point number for first body point (Later changed on Line 26)	The Time, C = Control, R = No. I = Tes. The answer I (lime) or Y (Tes) will ask questions 4 through 7. The answer C (Control) will ask quest-			T = 100, W = No Am anemos W (188) with ask questions to through to	Resolution parameter controls number of modes in slab and ablator inversa- Parameter in defined as HTM in description of subrouties NGE.	Maximum allowable time step is divided by this value. Defined as SIMI in	description of instabity occurs itom strongly monitors territors.	Tolerance for convergence in equivalent conductor actwork calculations.	Pelenetion factor for celculating sidpoint tempersture in equivalent con-	ductor routine.	Persacter calculation computes new conductor and capacitor values in creased accuracy and run times result from decreasing this value.
L.TAS.	:	ä	m,	÷	'n	نۍ			só	•	10.		11-13	±	15.	16.		17.	18.	tı	19.
	MO.	RIN EXITS 1 MATERIAL THE MANUER INPUT DATA FILE NAME ?	FINITE IN STRUCTURE FILE NATE ?	3 HANT IS THE LAME OF THE CUMPUT FILE?	OUTFUL, DAT 4 WHAT IS THE INITIAL TIME (SEC) ?	0.0 5 WHAT IS THE FINAL TIME (SEC) ?	6 WAIT IS THE TIME (SEC) BETWEEN PRINTOUTS ?	100.00 JANT TO RESET CONTROL PARAMETERS ?	N N N N N N N N N N N N N N N N N N N	1 STATE STATE SOUTH AND THE STATE OF THE STA		11 MANT IS THE INITIAL TIME(SEC) ?	0.0 12 wint is the final time (sec) ?	1410.0 13 mint is the tine(Sec) between printouts 1	100.0 14 TO YOU WANT TO RESET CONTROL PARAMETERS ?	15 RESOLUTION: DEFAULT = 10.0 NEW VALUE =	15 STABILITY: DEFAULT = 2.0 NEW VALUE =	17 ITERATION TOLEMENCE: DEFAULT = .001 NEW VALUE =	18 RELAXATION FACTOR: DEFAULT = 0.5 REW VALUE =	19 MUBER OF STEPS BETWEEN PARAMETER CALC.: DEFAULT = 20 NEW VALUE	20 HAXIMIN RIPBER OF ITERATIONS: DEFAULT = 3000 NEW VALUE =

*If no response, return key will advance code to next question and default value will be used.

Table 5.7 Interactive input for Configuration Sham in Figure 5.1

Propess will stop (normal exit when manner of steps is reached).

20.

ORIGINAL PAGE IS OF POOR QUALITY

	ERMANATION Units of thermoensiorment E = English, H = Petric (See Table 5.2).	E = English, M = Hetric.	R = English, N = Retrie.	$K = N_0$, $T = Tes$. If yes the values of the capacitors and conductors will be printed.		Initial temperature of structure is degrees F if answer to questions 23 is E or degrees E if answer to 23 is N.	Tenperature of sink which structure reradiates to in degrees F if answer to question 23 is E or degrees K if answer is R.	View factos between surface of structure and sink.	T = Yes, N = No. If the answer is T = Yez, then questions defining the structure are omitted. See Table 5.7 for input previously defined using structures file.	$f={ m Yes}$, ${ m N}={ m No}$. If the answer is Yes, then structure definition will be added to structures file.	Number of layers of structure. For this case we have four, ablazor, ra-
	L.INB NO.	22.	23.	24.	25-27	28.	29.	30.	31.	32.	33.
METRIC DEG K CN JOULES KGM	IN ENGLISH OR PETRIC ?	OR PETRIC ?	OR NETRIC ?		DINTS ?	WIROL PARAMETERS ?	BODY PT. 3 ?	DV FT. 3?	T. 3 ? 3 Exist in the structure file ?	OR BODY PT. 3 TO THE STRUCTURE FILE ?	
ENGLISHTDEFAULT) TEMPERATURE DEG F LENGTH INCHES EMERGT BTU PASS LEM	NO. 21 ATE THE UNITS OF MINIVER.DAT	E TO YEU WANT OUTPUT DATA IN ENGLISH OR PETRIC ?	23 TO YOU WANT INPUT DATA IN ENGLISH OR PETRIC	24 TO YOU WANT ADDITIONAL PRINTOUF ? N	25 WHAT IS THE TOTAL NUMBER OF BODY POINTS ?	26 WHAT IS THE BODY POINT MAMBER ?. 3 PRO YOU WANT TO RESET THE TIME OR CONTROL PARAMETERS ?	R WHAT IS THE INITIAL TEMERATURE OF BODY PT.	29 MINT IS THE SINK TEMPERATURE OF BODY PT.	30 MANT 15 THE VIEW FACTOR FOR BODY PT. 1.0 31 DOES THE STRUCTURE FOR BODY PT.	N 32 TO YOU MANT TO ADD THE STRUCTURE FOR BODY PT. Y 33 HWW MANY LAYERS AT BODY PT. 3 ?	

Table 5.7 (Continued)

ORIGINAL PAGE 164' OF POOR QUALITY

	EXPLANATION	Number of structure type for first layer. Assent I thanks 7 scanding to table,	Interial identifier (Table 5.3) and thickness of ablator.	I = Tee, H = No. If answer is yet, will return to line 34.	Number of structure type for second layer. Answer 1 through 7 antording to table.	Autorial identifier (Table 5.3) and thickness for the top unterial of the radiation gap. For this sample columbium (10) .12% inches thick.	Meteriel ideatifier (Table 5.2) and thickness of bottom material of the radiction gap.	Overall beight of radiation gap.	I - Yes, h No. If answer is yes, will return to line 37.
	LINB	ź	zi	36.	31.	38.	39.	•	#
SLAB. RADIATION GAP 2 H9WEYCOMB. 3 CORRUGATED 4 Z STANDOFF 5 THAN SKIN 6 ABLATOR SUBLINER 7		WHAT IS THE STRUCTURE TYPE MUNBER FOR LAYER I OF BOOY PT. 3 ?	MARI 15 THE MAY, IUGNITEER AND THE MAY, THICKNESS FOR LAYER 1 OF BODY PT. 3 ? 28 1.0	ARE THERE ANY CORRECTIONS FOR LAYER 1 OF BODY POINT 3 ?		STRUCTURE TYPE NAMBER	SLAB. 1 RADIATION G. 2	CONSTRUCTED 4	THIN SKIN 6 ABLATOR SUBLINER 7

STRUCTURE, TYPE

를 를 저

37 WHAT IS THE STRUCTURE TYPE NUMBER FOR LAYER 2 OF BODY PT. 3

38 WHAT IS THE MAT. IDENTIFIER AND THICKNESS OF MAT. FOR LAYER 2 OF BODY PT. 3.7

MANT IS THE NAT. IDENTIFIER AND THICKNESS OF NAT. FOR LAYER 2 OF BODY PT. 3 ?

1 .10 1 STRUCTURE HEIGHF FOR LAYER 2 OF BODY PT.

ME THERE ANY CORRECTIONS FOR LAYER 2 OF BODY POINT

Table 5.7 (Continued)

STRUCTURE TYPE - - - NUMBER

-	7	· ••	•	· (· vo	~
SLAB	RADIATION GAP	HOREYCOPE	CURRUGATED	2 STANDOFF	THIN SKIB	ABLATOR SUBLIFER

10 E

Answer I through 7 according

Number of structure type for third layer.

42.

44 ARE THERE ANY CORRECTIONS FOR LAYER 3 OF BODY PRINT

STRUCTURE TYPE --- NUMBER

Ratorial identifier (Table 5.3) and thickness of top of Z-standoff struc-

Number of structure type for fourth layer. Answer I through I according

Material identifier (Table 5.3) and thickness, (.3 for this example).

If yes, will return to lim 42

Material identifier (Table 5.3) and thickness for bottom of 2-standoff

structure.

structure.

\$

Material identifier (Table 5.3) and thickness for middle or I part of

Overall height of Z-standoff structure (2.0 inches), pilch or distance between Z structures (8.0 inches), and flange midth (.75 inches) of

Y = Yes, W = No. If yes then will netwen to lime 45.

50.

	7	•	•	5	· ©	7
SL/8	RAD: AT ION GAP	HOME YCOPB:	CORRUGATED	Z STANDOFF	THE SEE	ABLATOR SUBLINER

MAI IS THE STRUCTURE TYPE NURBER FOR LAYER 4 OF BOOY PT. 3 ?

- 16 WHAT IS THE PAT. IDENTIFIER AND THICKNESS OF MAT.
- 17.14
 47 WHAT IS THE MAT. IDENTIFIER AND THICKNESS OF MAT. FOR LAYER 4 OF BODY FT. 3.2
- 48 MANT IS THE PAIL IDENTIFIER AND THICHMESS OF MAT. FOR LAYER 4 OF BODY PT. 3 7
- 49 WINT IS THE STRUCTURE HEIGHT, PITCH, AND FLANCE WIDTH FLA LAYER 4 OF BOOM PT.
- 50 ARE THERE ANY CORRECTIONS FOR LAYER 4 OF BODY POINT 3 ?

ORIGINAL PAGE IS OF POOR QUALITY

Table 5.7 (Continued)

A STANDARD OF THE STANDARD OF		Pictor (
1.000000 IN.	1.50000 IN.	0.300000 IN.	2.0000c0 IN.	
B-STG. CORK ABLATOR SUBLINER	U.125000 IN. CTD.COLUBE. RABIATION GAP	0.100000 IN. AL.7075-TG. AL.7075-TG. THIN SKIN	2 2 72.772 Z.27272 Z.27272 Z. Z.27272 Z. Z. A 7079–76 Z. STANDGFF Z.	0.180700 IN, CTD.CRLU-B

Mcture Of Structure And Materials Appears Con Screen

	ONS FOR BODY FT. 3 ?	UMBER FOR BODY PT. 3	53 GIVE A TWO LINE DESCRIPTION OF THE STRUCTURE FOR BODY PT. TEST CASE STRUCTURE FOR LANGIEY CPATER.	ABLATOR SUBLINER - RADIATION GAP - THIN SKIN - Z STANDOFF
LINE NO.	51 ARE THESE ANY CORRECTIONS FOR BODY FT.	52 WAIT IS THE STRUCTURE NUMBER FOR BODY PT.	53 GIVE A TWO LINE DESCRI	MBLATOR SUBLINER - RAD

51. Y = Yos, W = No. If answer is yes will return to line number 10.

52. Answer assigns a structure identification cumbar to the thermal protection system definition for storage in the structures file.

51. Roply is two line description of structure which is lurladed in the structure fibe.

MODEL COMPLETE - - - - - 60ME TO EXECUTE

--- EVECUTION CONPLETE --

OUTPUT FILENAME = OUTPUT.DAY

Name Of Output File Appears When Execution Is Complete

OF POOR QUALITY

Table 5.7 (Concluded)

5.5 EXAMPLE CASE ONE RERUN FROM STRUCTURES FILE

Here we have rerun the case previously described using the data stored on the structures file which defines the thormal protection system. Table 5.8 shows the input for this case. As can be seen, the interactive input has been greatly simplified. The description of lines one to thirteen has been previously given. At line 14, the response is Y (yes) since we have already described the structure. Line 15 asks for the structure identifier number which was assigned previously. If the answer at line 16 is Y (yes) then control is returned to line 7, if N (no) we have completed the interactive input and EXITS goes into execution.

THIS IS THE CONFIGURATION FOR BEEN FIT.

NO. RUIN EXITS

I WHAT IS THE MINIVER INPUT DATA FILE MANE ?

WHAT IS THE STRUCTURE FILE NAME ? STRUCTURE, FIL WHAT IS THE NAME OF THE CUIPUT FILE ? OUTPUT, DAT

HAT IS THE INITIAL T'ME(SEC) ?

(1)

1.0000000 IN.		1.500000 110.	71 100,	D_\$00000 1N.	#9 FF	2_000000 1%_	
BLATOR SIB. HER		Padiation Gap		MINS WITH		Z STPECGF	
B-STB. CORX	0.125000 IN. CTD.CCLURB		0.100000 IN. AL.7075-TE	R.7075-IG	0.140690 IN. INCOM. 617	7	0.188030 IN. CTD.CCLURB

NO. 16 ARE THERE ANY COMRECTIONS FOR ECOTY FT.

3 EXIST IN THE STRUCTURE FILE ?

DO YOU WANT TO RESET THE TIME OR CONTROL PARAMETERS ?

2 1 2 1 2

MANT IS THE TIME(SEC) BETWEEN PRINTOITS ?

MANT IS THE FINAL TIME (SEC) ?

1 Wat is the body point number 7 WHAT IS THE INITIAL TEMPERATURE OF BODY FT.

MHAT IS THE SINK TEMPERATURE OF BODY PT.

WHAT IS THE VIEW FACTOR FOR BODY PT.

DOES THE STRUCTURE FOR BODY PT.

STRUCTURE MARGER = 1 TEST CASE STRUCTURE FOR LANGLEY CENTER ABLATOR SUBLINER - RADIATION GAP - THIN SKIN - Z STANDOFF

15 WHAT IS THE STRUCTURE NUMBER FOR BODY PT.

K)

NODEL COMPLETE ---- GONE TO EXECUTE

--- EXECUTION COMPLETE --
OUTPUT FILENAME = CUTPUT.DAT

ORIGINAL PAGG 164 OF POOR QUALITY

Table 5.8 Example of Sample Case One Rerun From Structures File

5.6 EXAMPLE CASE TWO (SLAB, SLAB, HONEYCOME AND CORRUGATED)

In this example the input requirements for the remaining three structures (Siab, Heneycomb, Corrugated) are demonstrated. Again, this case is not representative of a thornal protection system but serves to illustrate the input requirements for the remaining three structures. The configuration for this example case is shown in Figure 5.2.

Fig. 5.2 Configuration for Test Case Number Two

As shown in Figure 5.2 a LI-900 insulation .5 inch thick with a .10 inch coating of HRSI coating material is backed up by a honeycomb attracture .75 inches thick and a corrugated structure. Different materials are used in the honeycomb and corrugated layers to illustrate their input. The acrethermodynamic environment is defined on the file MINIVER.DAT and identified by body point 5. The structure was saved on the structure file STRUCTURE.FIL and is included in the example shown in Table 5.6. The interactive input for this case is presented in Table 5.9.

ORIGINAL PAGE IS OF POOR QUALITY

Expantion	1-16 Same as shown in Example Case One, Table 5.7.				
L INE NO.	1-16				
NO. THE SKITS	1 WINT IS THE HINIVER INPUT DATA FILE NAME ? HINIVER, D.S.T.	2 WHAT IS THE STRUCTURE FILE NAME ?	3 UNIAT IS THE NAME OF THE OUTPUT FILE ?	4 MAT IS THE INITIAL TIPE (SEC) ?	5 WILL IS THE FIUNE TIM. (SEC) ?

MIAT IS THE TIPE (SEC) BETWEEN PRINTOUTS ?

100.0 no you want to reset control parabeters ?

MAT IS THE TOTAL NUMBER OF BODY POINTS ?

MINT IS THE BODY POINT HUMBER ?

Table 5.9 Interactive Input for Configuration Shown in Figure 5.2

3 TO THE STRUCTURE FILE ?

IN YOU WANT TO ALD THE STRUCTURE FOR BODY PT.

15

HOW HANY LAYERS AT BODY PT.

NOES THE STRUCTURE FOR BOCY PT.

3 EXIST IN THE STRUCTURE FILE ?

TO YOU MANT TO RESET THE TIME OR CONTROL PARAMETERS ?

MINT IS THE INITIAL TEMPERATURE OF BODY PT.

MINT IS THE SINK TEMPERATURE OF EACH PT. MINT IS THE VIEW FACTOR FOR BOOY PT.

STRUCTURE TYPE

	- 0 N	क् ष	· • ·
8	ACTAS FADIATION GAP HONEYCORB	CORRUGATED Z STANDOFF	THIN SCIN ARLATOR SUBLINER

1 OF BODY PT.	
LINE HO. 17 MINT IS THE STRUCTURE TYPE NUMBER FOR LAYER I OF BODY PT.	18 WINT IS THE PAIT, IDENTIFIED AND THE MAT. THE COLUMN TO SERVICE THE PAIT THE PAIR
15	2
元 	B WINT
25 -	=

	•
KESS	1 OF BOOT POINT
	BODY
-	8
£	
₩. E	FOR LAYER
Em	~
5	2
	RE ANY CORRECTIONS F
5	5
8	2
8	8
-	Ž
FOR LAYER 1 OF BODY PT. 3 ?	ARE THEXE
108 L	¥ .
	91

Material identifier (Table 5.3) and thickness of second slab.

Number of structure type for second layer.

If answer is yes, return to line 20,

Material identifier (Table 5.3) and thickness of slab.

Member of structure type for first layer.

L'ENB Re 17. If answer is yes, return to lime 17.

19.

21. 22.

20 MANT IS THE STRUCTURE TYPE MUNGER FOR LAYER 2 OF BODY PT.

21 WHAT IS THE MMT. IDENTIFIER AND THE MMT. THICKORESS FOR LAYER 2 OF BODY PT. 3 ? 5 .5

Table 5.9 (Continued)

SLAB RADIATION GAP 2 HOMEYCOMB 5 CONNUGATED 4 2 STANDOFF 5 THIN SKIN 6 ARLATOR SUBLINER 7		
LINE NO.	L INE	EIFAMTION
23 WHAT IS THE STRUCTURE TYPE NUMBER FOR LAYER 3 OF BODY PT. 3 ?	7 23.	Number of structure type for third layer.
8	24.	Raterial identifier (Table 5.3) and thickness of top of boneycomb.
FOR LAYER 3 OF 9007 PT. 3 ?	25.	Hatesial identifier (Table 5.3) and thickness of bottom of boneycomb.
25 WINT IS THE PUT. IDENTIFIER AND THICKNESS OF MAT. 2 FOR LAYER 3 OF BOOY PT. 3 ?	26.	Naterial identifier (Table 5.3) and thickness of honegoush core.
IER A	27.	Overall height of honsycomb and homeycomb and pitch.
FOR LAYER 3 OF BODY PT. 3 7	28.	T = Tes, W = No. If answer is yes, return to line 23.
S THE STRUCTURE HEIGHT AND CELL DIMENSIONS OF LAYER 3 (0F B00Y PT. 3 7 29.	Number of structure type of fearth layer.
28 ARE THERE ANY CORRECTIONS FOR LAYER 3 OF BODY POINT 3 1	30.	Raterial identifier (Table 5.3) and thicknass of top of corregated structure.
STRUCTURE TYPE NUMBER	31.	Material identifier (Table 5.3) and thickness of bottom of corrugated structure.
RADIATION GAP 2 HUNEYCOMB 5	32.	Natorial identifier (Table 5.3) and thickness of corrugate saterial.
Z STANDOFF S	33.	Overell height of cosrugated structure and pitch of corrugations.
ABLATOR SUBLINER 7	34.	I = Yes, N = No. If answer is yes, return to line. 29.

MHAT IS THE STRUCTURE TYPE NUMBER FOR LAYER 4 OF BODY PT. 8

HAT IS THE WIT. IDENTIFIER AND THICKNESS OF MIT. OR LAYER 4 OF BODY PT. 3-7 R

HAT IS THE WIT. IDENTIFIER AND THICKNESS OF MAT. OR LAYER 4 OF BODY PT. 3 ? 3

17 .08 Mint is the Mata, Identifier and thicheess of hat, for layer 4 of body Pt. 3 ? 9 .12 ×

ORIGINAL PAGE 18 OF POOR QUALITY

IS THE STRUCTURE HEIGHT AND PITCH FOR LAYER 4 OF 11001 PT. 田 黄

THENE ANY CORRECTIONS FOR LAYER 4 OF BODY POINT

(Contined) Table 5.9

Ę.
B007
哥
₫
HEAT
=
8
품
S
HIS

Picture Of Structure And Naterials Appears On Screen					
0.100000 IN.	0.500000 IN.		0.75000 1м.		1.000000 IN.
	B 18		HONEY COMB		CORREGATED
HRS I COMT SLAB	9/15 006-17	0.120000 IN. AL.1075-16		0.110000 IN. AL.7079-T6 0.080000 IN, INCOM. 617	V V V V V TITABLUM V
		u o na repostation de la constante de la const			

LINE
NO...
ST-37 Same so Exemple Case One. Table 5.7.

NODEL COMPLETE - - - - - 60ME TO EXECUTE

2 GIVE A THO LINE DESCRIPTION OF THE STRUCTURE FOR BODY PT. TEST CASE STRUCTURE FOR LANGLEY CENTER SLAB. - SLAB. - IDNEY ONB. - OJRINGATED

ARE THERE ANY CORRECTIONS FOR BODY PT. N N WHAT IS THE STRUCTURE MARKER FOR BODY PT.

×

H 5 H

--- EXECUTION COMPLETE --

OUTIVE FILENAME = OUTIVE.FIL

Table 5.9 (Concluded)

Section 6.0

OUTPUT

This section presents the results of the two sample cases used as examples of the input requirements in Section 5.0. Input for the first case is presented in Section 5.4 while Section 5.6 contains input requirements for the second case. Output for these examples is shown here for a typical Shuttle reentry trajectory. These structures shown in Figs. 5.1 and 5.2 are not examples of a TPS design but are only presented here to exhibit the EXITS code capabilities.

The first case is the ablator-radiation gap-thin skin- Z standoff structure shown in Fig. 5.1. Results are presented in Table 6.1 for this case. The output is divided into Sections A. B. C. . . H for description purposes.

Section A in Table 6.1 shows the parameters, flags, and time controls for this case. These values are either set during the interactive input or default values are used. A description of these variables is given below:

TSTART - Initial time

TSTOP - End time

TIMPT - Time between printouts

DTIM - Parameter which controls node spacing for slab

or ablator structures

STAB - Maximum allowable time step is divided by this number to assure stability

TOL - Convergence criteria for equivalent conductivity calculations

BET - Relaxation factor for iteration scheme used to compute equivalent conductivity

NBP - Number of body points

NEXT - Number of time steps between calculation of new conductor and capacitor values

NSTP - Maximum number of time steps

IPFLAG - Fing for printing conductor and capacitor values.

Section B presents the thermopyhsical property values used in the analysis. Only the properties for the materials used are shown here. Values for density, specific heat, conductivity, emissivity, and for an ablator material, sublima-

tion temperature and heat of ablation are given.

Section C presents the LANMIN generated environment for the body point specified. Values for film coefficient, recovery enthalpy, and pressure are given.

Section D shows the node positions and numbering sequence, structure type, material and conductor number of the network. Initial temperature, sink temperature and the view factor to the sink is also shown.

Section E depicts a graphic representation of the model including the node spacing and materials. A double horizontal dashed line separates the structure types. Node locations are represented by an ''O'' on the left hand side.

Section F presents the temperature and load histories of the structure beginning at initial time. At each output, the total number of time steps and the value of the last time step taken are shown. Next, the integrated heat loads and heat rates are presented along with the net heat into and out of the structure. Surface recession and recession rates are shown. The temperature at each node within the structure and the node location, XX = 0.0 being the initial surface, is given.

Section G is presented each time a node is dropped from the network as the surface recedes. The same information is contained here as in Section E.

Section H gives the unit mass of the TPS and a message if a temperature has exceeded a material limit as specified in the material property tables.

Output for the second example is presented in Table 6.2. A description of this case is not necessary due to its similarity to the first example.

```
1
      TSTART .
                     0.000
                                TETOP =
                                            1410.000
                                                        TIMPT .
                                                                      100.000
     HITC
                     10.000
                               STAE .
                                              2.000
                                                        TIL
                                                                       0.001
                                                                                 DET
                                                                                                 0.500
                               HEXT .
                                                        NSTP .
                                                                    3000
                                                                                 IPFLAD =
i
          TABLES
       8-STG.CORK - MAT NO. 28
MAXIMUM TEMPERATURE.
                               760.40 DEG F
    TEP.
                  PENSITY
    (DEG F)
                 (LBH/CU.FT)
  -0.4596E+03
                 0.3100E+02
                                                                          ORIGINAL PAGE IS
  0.9540E+04
                 0.3100E+02
                                                                          OF POOR QUALITY
    TEM.
                SPECIFIC HT.
    (DEG F)
               (BTU/LBH-DEG F)
  -0.4596E+03
                 0.4600E+00
  0.9540E+04
                 0.4600E+00
    ter.
                CONDUCTIVITY
               (BTU/FT-S-DEG F)
    (DEG F)
  -0.4596E+03
                 0.1110E-04
  0.4004E+03
                 0.1110E-04
  0.8504E+03
                 0.3330E-05
  0.9540E+04
                 0.3330E-05
    TEM.
                 EHISSIVITY
    (DEG F)
               (DINENSIONLESS)
 -0.4596E+03
                 0.8000E+00
  0.9540E+04
                 0.8000E+00
   PRESSURE
                SUB. TEMP
   (LB/SA.FT)
                  (DEB F)
  0.0000E+00
                 0.7604E+03
  0.5000E+04
                 0.7604E+03
   PRESSURE
                HEAT ALL.
  (LB/50.FT)
                 (HEJ/LEH)
  0.0000E+00
                 0.7000E+04
  0.5000E+04
                 0.7000E+04
```

(A)

(1)

Table 6.1 Output For Example Case One (Table 5.7)

CTD.COLUMB - NAT NO. 10

-0.4576E+03 0.9540E+04 0.1750E+03 0.1750E+03

CIDICUL	ישה ואח יי פרטי	10		
MAXIHUM TEMPER	ATURE	2500.40.DEG F	original page is of poor quality	ľ,
TĐÝ.	DENSITY		O 1, 1 O 2 · · · U	
(DEB.F)				
(DED-1)	(LBH/CU.FT)			
A AND DE	ă strămisă			
-0.4596E+03				
0.9940E+04	0.5620E+03			
19 P .	SPECIFIC HEAT			
(DEG F)	(BTU/LEN-DED F)			
1000 1 1	121012011			
-0.4596E+03	0.9900E-01			
	0.9900€-01			
	0-9100E-01			
	0.6500E-01			
0.1000E+04	0.6500ĕ-01			
0.9540E+04	0.6900E-01			
***************************************	***************************************			
tep.	CONDUCTIVITY			
(DEG F)	(BTU/FT-8-DEG F)		
		•		
-0.4596E+03	0.4400E-02			
	0.4400E-02			
	0.6100E-02			
	0.7300E-02			
0.2000E+04	0.8000£-02			
0.9940E+04	0.8000E-02			

	ومشرعان والقاهوي الوريطو			
TEN.	emissivity			
(Deg f)	(DIMENSIONLESS)			
-0.45%&E+03				
0.2700E+04	0.1900E+00			
0.3400E+04	0.2400E+00			
0.9540E+04	0.2400E+00			
V174706707	4.8400-40			
الم المعادد الإي	# dag	•		
AL.707	5-76 - MAT NO.	1		
maximum tempe	RATURE	200.40 DEG F		
and all the same	# and # and a deal			
TEP.	DENSITY			
(DEG F)	(LBN/CU.FT)	•		

Table 6.1 (Continued)

```
TEP.
                SPECIFIC HEAT
                                                                 ORIGINAL PAGE 19
   (DEG F)
               (BTU/LBN-DED F)
                                                                 OF POOR QUALITY
  -0.4596E+03
                  0.1700E+00
  -0.1496E+03
                  0.1700E+60
   0.4000E+00
                  0.1990E+00
   0.2004E+03
                  0.2100E+00
                 0.2750E+00
  0.9604E+03
   0.1000E+04
                  0.2750E+00
   0.93406+04
                  0.2790E+00
     TEP.
                CONDUCTIVITY
    (DEB F)
               (BTU/FT-S-DED F)
  -0.4996E+03
                 0.1400E-01
  -0.1996E+03
                 0.1400E-01
  0.4000E+00
                 0.2000E-01
  0.3004E+03
                 0.2500E-01
  0.4004E+03
                 0.2700E-01
  0.5004E+03
                 0.2900E-01
    TEMP.
                 EMISSIVITY
   (DEG F)
              (DIMENSIONLESS)
 -0.4596E+03
                 0.1200E+00
  0.9540E+04
                 0.1200E+00
       INCOME 617 - MAT NO. 17
HAXINUM TEMPERATURE
                              1800.40 DEG F
    TEP.
                  DENSITY
   (DEG F)
                (LBH/CU.FT)
 -0.4596E+03
                0.5219E+03
 0.9540E+04
                0.5219E+03
   TEP.
               SPECIFIC HEAT
  (DEG F)
              (BTU/LBH-DEG F)
-0.4596E+03
                0.1000E+00
 0.7840E+02
                0.1000E+00
 0.2004E+03
                0.1040E+00
 0.4004E+03
                0.1110E+00
 0.6004E+03
                0.1170E+00
 0.1000E+04
                0.1310E+00
 0.1200E+04
                0.1370E+00
 0.1400E+04
                0.1440E+00
 0.16006+04
                0.1500E+00
 0.1800E+04
                0.1570E+00
 0.2000E+04
                0.1630E+00
```

2 1

0.9540E+04

0.1630E+00

ORIGINAL PAGE IS OF POOR QUALITY

tem. (Ded F)	GUNDUCTIVITY (BYU/FT-8-DEO F)
-0.45965+03	0.217&E~02
0.78406+02	0.2176E-02 .
0.2004E+03	0.2338E-02
0.4004E+03	0.261&E-02
0.6004E+83	Ö. 2894E-02
0.1000E+04	0.3449E-02
0.1200E+04	0.3727E-02
0.1400E+04	0.4005E-02
0.1600E+04	0.4282E-02
0.1800E+04	0.4560E-02
0.2000E+04	0.4836E-02
0.9940E+04	0.4838E-02
TEMP.	EMISSIVITY
(DEG F)	(DIPENSIONLESS)
-0.459&E+03	0.1500E+00
0.9540E+04	0.1900E+00

Table 6.1 (Continued)

TIME	film Coef.	REC ENTHALPY.	PREBBURE	©
(SEC)	(LBM/SQ_FT-SEC)	(BTU/LBM)	(L8F/80.FT)	•
		रसरकर स्त्रार	APPRILAMENT 1	
0.0000E+00	0.6490E-03	0.1126E+05	0.12525-01	
0.5000E+02	0.1221E-04	0.1124E+05	0.3449E-01	
0.1000E+03	0.250ZE-04	0.1123E+05	0.1090E+00	
0.1250E+03	0.3631E-04	0.1123E+05	0.1992E+00	
0.19006+03	0.5367E-64	0.11226+05	0.3777E+00	ORIGINAL PAGE IS
0.1790E+03	0.8009E-04	0.1123E+05	0.7313E+60	OF POOR QUALITY
0.2900E+03	0.1203E-03	0.1124E+05	0.1440E+Ö1	
0.22506+03	0.1799E-03	0.1127E+05	0.2802E+01	
0.2750E+03	0.23298-03	0.1113£+05	0.7749E+01	
0.3000E+03	0.3015E-03	0.1109E+05	0.11266+02	
0.3500E+03	0.3710E-03	0.1092£+05		
0.4000E+03	0.3974E-03	0.1060E+03	0.1779E+02	
0.4500£+03	0.4109E-d3	0.1027E+05	0.2004E+02	
0.5000E+03	0.4259E-03	0.102/E+03 0.9966E+04	0.21212+02	
0.5280£+03	0.4325E-03	0.9769E+04	0.2314E+02 0.2379E+02	
0.5560E+03	0.4402E-03	0.9577E+04		
0.5980E+03	0.4519E-03		0.2470E+02	
0.6400£+03	0.4661E-03	0.9270E+04	0.2599E+02	
0.6540E+03	0.5320E-03	0.69662+04	0.2908E+02	
0.6820E+03	0.6853E-03	0.8876E+04	0.2915E+02	
0.7100E+03	0.7182E-03	0.86808+04	0.31246+02	
0.7380E+03	0.8937E-03	0.8490E+04	0.3105E+02	
0.7526E+63	0.1013E-02	0.82285+04	0.3303E+02	
0.7660E+03	0.1148E-02	0.8106F+04	0.3425E+02	
0.7800E+03	0.1328É-02	0.79845+04	0.3565E+02	
0.7940E+03	0.1546E-02	0.7863E+04	0.3739E+02	
0.80806+03		0.7738E+04	0.3927E+02	
0.82206+03	0.1784E-02	0.76102+04	0.41262+02	
0.8500E+03	0.2090E-02	0.7476E+04	0.4368E+02	
	0.2389E-02	0.7149E+04	0.4938E+02	
0.8780E+03	0.2615E-02	0.6779E+04	0.5542E+02	
0.9060E+03	0.2856E-02	0.6385E+04	0.6202E+01	
0.9760E+03 0.1004E+04	0.3470E-02	0.5284E+04	0.76392+02	
0.1032E+04	0.3900E-02	0.4800E+04	0.8486E+02	
	0.4267E-02	0.42916+04	0.8986E+02	
0.1060E+04	0.44612-02	0.3797E+04	0.9285E+02	
0.1074E+04	0.4484E-02	0.35626+04	0.9301E+02	
0.1102E+04	0.4499E-02	0.3117E+04	0.9302至+02	
0.11162+04	0.4557E-02	0.2903E+04	0.92636+02	
0.11442+04	0.48448-02	0.24962+04	0.9407E+02	
0.1172E+04	0.5133E-02	0.21252+04	0.95656+02	
0.1200E+04	0.5153E-02	0.1813E+04	0.9244E+02	
0.1260€+04	0.5462£-02	0.1253E+04	0.8645€+08	
0.12905+04	0.5814E-02	0.1034E+04	0.6521E+02	
0.1390E+04	0.6301É-02	0.6930E+03	0.8364E+05	
0.1380E+04	0.6169E-02	0.9627E+03	0.80325+02	
0.1410E+04	0.5844E-02	0.4545E+02	0.764定+02	

Table 6.1 (Continued)

(0)

STRUCTURE DEFINITION

BODY POINT TIMIT # 100.00 bes F TEINK # 0.00 DED F FIJ = 1.000 NOGE NUMBER = DISTANCE FROM SURFACE . 0.000000E+00 IN. CONDUCTOR NUMBER . STRUCTURE TYPE - 7 ABLATOR SUBLINER MATERIAL I = 8-STU.CORK NODE NUMBER = 2 DISTANCE FROM SURFACE = 0.416667E-01 IN. NODE HUNGER . DISTANCE FROM SURFACE = 0.416667E-01 IN. CONDUCTOR NUMBER = STRUCTURE TYPE - 7 ABLATOR SUBLINER MATERIAL 1 = 8-STU.CORK MODE NUMBER -3 DISTANCE FROM SURFACE ... 0.83333E-01 IN. NODE NUMBER = 3 DISTANCE FROM SURFACE . 0.833333E-01 IN. CONDUCTOR NUMBER .

STRICTURE TYPE -ABLATOR SUBLINER MATERIAL 1 = 8-STO.CORK NDDE MARKER # DISTANCE FROM SURFACE # 0.125000E+00 IN.

NODÉ MUNBÉR = DISTANCE FROM SURFACE = 0.129000E+00 IN. CONDUCTOR NUMBER . STRUCTURE TYPE . ABLATOR SUBLINER MATERIAL 1 - B-STG.CORK NODE NUMBER = 5 DISTANCE FROM SURFACE = 0.166667E+00 IN.

NODÉ NUMBER = 5 DISTANCE FROM SURFACE = 0.16667E+00 IN. CONDUCTOR NUMBER = 5

STRUCTURE TYPE = 7 ABLATOR BUBLINER MATERIAL 1 = B-STG.CORK NODE NUMBER = & DISTANCE FROM SURFACE =

0.208333E+00 IN.

DISTANCE FROM SURFACE . 0.208333E+00 IN. NOTE NUMBER = 6 CONDUCTOR NUMBER = STRUCTURE TYPE . ABLATUR SUBLINER MATERIAL 1 = 8-STG.CORK

NODE NUMBÉR # 7 DISTANCE FROM SURFACE # 0.250000E+60 IN.

NOBE NUMBER # 7 DISTANCE FROM SURFACE = 0.250000E+00 IN. CONDUCTOR NUMBER = STRUCTURE TYPE = 7 ABLATOR SUBLINER MATERIAL 1 = B-STG.CORK

NCIDE NUMBER = 6 DISTANCE FROM SURFACE = 0.291467E+00 IN.

> Table 6.1 (Continued)

250

NODE 1	AMBER =	AMBER =	DISTANCE 8	FROM	BURFACE #	0.291667E+00	in.
	MIERIAL	1 = 8-573.	edink	MARKET I N	M - BANK TIME		
HOUE I	UNBER #	9	DISTANCE	FROM	BURFACE =	0.333336+00	in.
NODE (NAMER .	9 Number = Type =	DISTANCE 9	FROM	SURFACE #	0.33333E+66	IN.
9	STRUCTURE	TYPE -	7	ABLATO	ia gublingr		
		1 = B-810.		ADAM	CHDEARE W	0.37500 0 E+00	fai.
1400	TOTAL -		D101144 C	INST	WHITTING -	010/000C+05	6144
(CONDUCTOR	NUMBÉR =	10			0.375000E+00	IN.
	BTRUCTURE	TYPE = 1 = 8-8TC.	7 Admii	ABLATI	DR SUBLINER		
				COM.	a peare o	0.416667E+00	fN.
THUE !	NAMBER -	**	MAINT	. FNUN	SWIFFILE "	V14100072400	4144
NODE	NUMBER =	11	DISTANCE	FROM	SURFACE =	0.416667E+00	IN.
	APP N IMBN	w4 846(56	44				
	STRUCTURE	TYPE = 1 = 8-510.	7	ABLATI	OR SUBLINER		
				: COM	DISTACT -	0.458333E+00	tM.
MARC	MALIBER -	16	B TO : LEARC	- riveri	SAKLUAR -	V1700000C*V0	AMA
NODE	NUMBER = CONDUCTOR	12 NUMBER =	DISTANCE 12	FROM	SURFACE =	0.498333€+00	in.
	BIROLIUKE	1 = 8-510.	. CORN	WELL	uk avalinek		
				E FROM	SURFACE =	0.500000E+00	in.
NOOE	number =	13	DISTANC	E FROM	SURFACE =	0.500000E+00) IN.
	CONDUCTO	R NUMBER =	13				
	STRUCTUR	E TYPE =	7	ABLA	tor subliner		
e kedekin		1 . 8-510					
NUDE	NUMBER =	14	DISTANC	E FRO	9 SURFACE =	0.5416672+0	o in.
NODE	NUMBER =	14 0 Marbeb -	DISTANC	e frů	4 Surface =	0.541667E+0	o in.
	BTRUCTUR	E TYPE .	•7	ARLA	tor Subliner		
	MATERIAL	1 - 8-510	. CURK	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
MÜDÉ	NUMBER -	15	DISTANC	E FRO	n surface =	0.583333E+0	o in.
(IN)	MARKET	15	METAL	ie edu	n rimëare =	0.583333E+0	A TH
1-000	CHANNETH INTE	B MANGES	15				A 141
	STRUCTUR	E TYPE .	7	ABLA	TOR SUBLINER		
	THE ICK SEL	7 = 0.2011	J. WIKN				
NODE		16	DISTAN	CE FRO	M SURFACÉ =	0.625000E+0	O IN.

Table 6.1 (Continued)
106

ORIGINAL PAGE IN OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

MODE NAMEER = 16 DISTANCE FROM SURFACE = CONDUCTOR MY 7 = 16 STRUCTURE TYPE = 7 ABLATOR SUBLIMER MATERIAL 1 = 8-STO.CORK	0.625000E+60 IN.
NODE MANBER = 17 DISTANCE FROM SURFACE =	0.666667E+00 IN.
NOTE NUMBER = 17 DISTANCE FROM SURFACE = CÓNDUCTOR NUMBER = 17 STRUCTURE TYPE # 7 ANI ATTR SIRE TYPE	0.666667E+00 IN.
STRUCTURE TYPE # 7 ABLATOR SUBLINER MATERIAL 1 = B-STO.CORK MODE NUMBER * 18 DISTANCE FROM SURFACE =	Ö.708334E+00 IN.
NODE NUMBER + 18 DISTANCE FROM SURFACE + CONDUCTOR NUMBER + 18	0.708334E+00 IN.
STRUCTURE TYPE = 7 ABLATOR SUBLIHER MATERIAL 1 = 8-STG.CORK	
NODE "UNBER # 19 DISTANCE FROM SURFACE =	0.750000E+00 IN.
NODE NAMER = 19 DISTANCE FROM SURFACE = CONDUCTOR NAMER = 19	9.750000E+00 IN.
STRUCTURE TYPE = 7 ABLATOR SUBLINER MATERIAL 1 = 8-STO.CORK	
NODE NUMBER = 20 DISTANCE FROM SURFACE =	0.791667E+00 IN.
NODE NUMBER # 20 DISTANCE FROM SURFACE # CONDUCTOR NUMBER # 20 STRUCTURE TYPE # 7 ABLATOR SUBLINER NATERIAL 1 = 8-STO-CORK	0.791667E+00 IN.
STRUCTURE TYPE = 7 ABLATOR SUBLINER MATERIAL 1 = 8-STO.CDRK	
NODE NUMBER = 21 DISTANCE FROM SURFACE =	0.833334E+00 IN.
NODE NUMBER = 21 DISTANCE FROM SURFACE = CONDUCTOR NUMBER = 21	0.633334E+00 IN.
structure type = 7 ablator subliner	•
NATERIAL 1 = 8-STG.CORK NODE NAMBER = 22 DISTANCE FROM SURFACE =	0.875000E+00 IN.
NOTE NAMBER = 22 DISTANCE FROM SURFACE = CONDUCTOR NAMBER = 22 STRUCTURE TYPE = 7 ABLATOR SUBLINER MATERIAL 1 = 8-817 CMBH	0.875000E+00 IN.
STRUCTURE TYPE = 7 Atlanta cum face	
INTERNATE A TO DESCRIPTION	
NOOE NUMBER = 23 DISTANCE FROM SURFACE =	0.916667E+00 IN.
NOTE MARKER = 23 DISTANCE FROM SURFACE = CONDUCTOR NAMER = 23	0.916667E+00 IN.
STRUCTURE TYPE = 7 ABLATOR SUBLIMER MATERIAL 1 = 8-STO.CORK	
MATERIAL 1 = 8-STO.CORK MODE NUMBER = 24 DISTANCE FROM SURFACE =	0.958334E+00 IN.

Table 6.1 (Continued)

4

ORIGINAL PAGE 19

OF FOOR QUALITY

HODE NUMBER = DISTANCE FROM SURFACE # 0.9983348.00 IN. 24 CONDUCTOR NUMBER # STRUCTURE TYPE . 7 ABLATOR SUBLINER MATERIAL 1 = 8-STG.CORK NODE NUMBER = 25 DISTANCE FROM SURFACE * 0.100000E+01 IN. NODE NUMBER = 25 DISTANCE FROM SURFACE = 0.100000E+01 IN. CONDUCTOR NUMBER = STRUCTURE TYPE = RADIATION GAP MATERIAL 1 = CTD.COLUMB MATERIAL 2 . AL. 7079-16 NODE NUMBER = 24 DISTANCE FROM SURFACE = 0.250000E+01 IN. NODE NUMBER * DISTANCE FROM SURFACE = 26 0.290000E+01 IN. CONDUCTOR NUMBER = STRUCTURE TYPE = THIN SAIN MATERIAL 1 = AL.7075-T6 NODE NUMBER = 27 DISTANCE FROM SURFACE = 0.280000E+01 IN. NUDE NUMBER # 27 DISTANCE FROM SURFACE = 0.280000E+01 IN. CONDUCTOR NUMBER = STRUCTURE TYPE . 5 Z STANDOFF MATERIAL 1 = INCOML 617 MATERIAL 2 = CTD.COLUMB MATERIAL 3 = AL. 7075-TA NODE NUMBER = 28 DISTANCE FROM SURFACE = 0.480000E+01 IN.

Table 6.1 (Continued)
108

Control of the Contro

Table 6.1 (Continued)

TIME =	0.00000	TIME	STEP	8	0.00000	NC). Öf steps			Ō		(F)	
Integrated BTV/80.FT	HEAT					HEAT R	ates 1.ft-sec						
CONVECTED		0.0				CONVEC	TÉD .	0.0			,	Transmit ent of the st	Luc to
RADIATED		0.0				RADIAT		0.0				DRIGHVAL	
NET LOAD			0.	5		NET L		***		0.0	C	F POOR	QUALITY
STORED		0.0		•		STORE		6.0	,	V.V			
SUBLINED		0.0				SUBLIN		0.0					
ADVECTED		0.0				ADVECT		0.0					
tps net			0.0)		TPS NE		•••		0.0			
SURFACE RE	CESSIÓN												
Distance Temperatur	0.00000 E DEG F					RECESS	SION RATE	0.0	0000	in/sec			
ti 1)= 10)= 10		TI	3)= 1	00.000	T(4)=	100.000	1(5)= 100.000	
T(6)= 10)= 10		T(90.000			100,000		1= 100.000	
T(11)= 10 T(16)= 10)= 10				00.000			100.000)= 100.000	
T(21)= 10)= 10(00.000			100.000	T(20)= 100.000	
7(26)= 10			i)= 10(')= 10(00.000	T(24)=	100.000	T(25	1= 100.000	
NODE POSIT		11 2/)- IM	/.UU	11	251= 1	60.000						
	0.000	XX(۵۱ ۵	0.042	XX	(3)≃	ă Mate	**			****	.	
XX(6)=	0.208	XX		0.250		(8)=	0.083 0.292		(4)		XX(
	0.417	XX(1		0.458		13)=	0.500		(9): (14):		XX(1		
XX(16)=	0.625	XX(1		0.667		18)=	0.708		(19):		XX(1 XX(2	•	
XX(21)=	0.833	XX(Ž		0.875		231=	0.917		(24)		IX(2		
XX 26)=	2.500	XX(2	7)=	2.000	XX	28)=	4.800	•••		******	***	41- 1100	
•													
	100.00000	TIPE	STEP	=	2.94209	NÜ	. OF STEPS	•	2	12			
INTEGRATED	HEAT					HEAT R							
BTU/50.FT						STU/SO	.FT-空C					•	
CONVECTED	1	5.1				CONVEC	TED	0.3					
radiated		3.8				RADIAT		0.1					
NET LOAD			11.3			NET LO		~~~	6	.2			
STORED		1.3				STURED		0.2	•	•••			
SUBLINED		0.0				SUBLIM	的	0.0					
ADVECTED TPS NET		0.0		1		ADVECT		0.0					
IFS RE!			11.3	l		TPS NE	7		C	.2			
burface rec	ESSION												
distance	0.00000	in.				recess	ion rate	0.00	1000 1	n/Sec			
TEMPÉPATI (DE		te a)= 17 4	787	41	3)= 1	44 744	.	3 4	ina me			
	1. EXB									123.583		· 112.544	
1 11= 226)= 1M	.114		M12 2.	11 474					L ### ###	
ti 11= 226 ti 41= 106	.400	T(7			T(Ti	6)= 1(13)= 1(T(100.623		= 100.253	
t(1)= 226 t(4)= 106 t(11)= 100	.400 .096	T(7))= 100	.034	Ţſ	13)= 1	00.011	fi	14)=	100.003	ti 15	# 100.001	
TEMPÉRATURE †(1)= 226 †(1)= 106 †(1)= 100 †(16)= 100 †(21)= 100 †(26)= 100	.400 3.096 3.000 3.000	T(7))= 100 j= 100	.034	Ťi Ťi		00.011 00.000	fi Ti	14)= 19)=		Ť(15)		

NODE POSITION INCHE	re			
XX(1)= 0.000	XX(2)= 0.042	XX(3)= 0.083	XX(4)= 0.125	Wite dia in sem
BOS.O = (4)XX	XX(7)= 0.250			1X(5)= 0.167
XXI 11)= 0.417	XX(12)= 0.456			XX(10)= 0.375
XX(16)= 0.625	XX(17)= 0.667		XX(14)= 0.542	XX(15)= 0.583
XX 211- 0.833	XX 22)= 0.67		XX(19)= 0.750	XX(20)= 0.792
1X(26)= 2.500	XX(27)= 2.800		XX(24)= 0.958	XX(25)≈ 1.000
nut net Slobb	##/ #//- E1994	XX(28)= 4.800		
TIME = 200.00000	TIME STEP .	0.47696 NO. OF STEP	S = 58	
		elitate was at piet		ORIGINAL PAGE
INTEGRATED HEAT		HEAT RATES		OF POOR QUALIT
\$TU/90.FT		btu/sq.ft-sec		or room gorian
CONVECTED	80.2	CONVECTED	4 5	
E	24.0	RADIATED	1.3 0.4	
NET LOAD	56.2	NET LOAD	0.7	
	56.2	STURED	0.7	
SUBLINED	0.0	SUBLIMED	0.0	
ADVECTED	0.0	ADVECTED	0.0	
TPS NET	56.2	TPS NET	0.7	
			•••	•
SURFACE RECESSION	-			
DISTANCE 0.00000	IN.	RECESSION RATE	0.00000 in/sec	
Temperature des f T(11= 655.963	4) AL AND AND	ورو شامنک واقع فقه		
T(6)= 147.577	f(2)= 428.034 f(7)= 128.266	T(3)= 307.611	T(4)= 229.010	1(5)= 178.921
T(111= 102.956	f(12)= 101.593	T(8)= 116.533 T(13)= 100.837	T(9)= 109.504	T(15)= 105.358
T(16)= 100.102	T(17)= 100.048	T(18)= 100.837	T(14)= 100.428	T(15)= 100.212
T(21)= 100.002	T(22)= 100.001	T(23)= 100.000	T(19)= 100.009	1(20)= 100.004
T(26)= 100.000	T(27)= 100.000	7(28)= 100.000	Tt 241= 100.000	T(25)= 100.000
NODE POSITION INCHES	11 4//- 1901900	11 251- 100:000		
XX(1)= 0.000	XX(2)+ 0.042	XX(3)= 0.083	XX(4)= 6.125	XX(5)= 0.167
XX(6)= 0.208	XX(7)= 0.250	XX (8)= 0.272	XX(9)= 0.333	XX(5)= 0.167 XX(10)= 0.375
XX(11)= 0.417	XX(12)= 0.458	XX(13)= 0.500	XX(14)= 0.542	XX(15)= 0.583
XX(16)= 0.625	XX(17)= 0.667	XX(18)= 0.708	11(19)= 0.750	XX(20)= 0.792
XX(21)= 0.833	XX(22)= 0.875	XX(23)= 0.917	1X(24)= 0.958	IX(25)= 1.000
XX(26)= 2.500	XX(27)= 2.800	XX(28)= 4.800	MAY DIT - GOIGH	W/ E41- 1'AAA
			•	
	•	•		
TIME = 300.00000	TIPE STEP =	1.47916 NO. OF STEP	5 ± 8 5	
INTEGRATED HEAT		A Min A off - All a Albania		
BTU/SO.FT		HEAT RATES		
B. (A.C. C.)	•	BTU/SQ.FT-SEC		•
CONVECTED 3	10.4	CONVECTED	3.2	
** · * * * * * * * * * * * * * * * * *	04.4	RADIATED	3.2 0.8	
NET LOAD	206.0	NET LOAD	2.4	
	8.60	STORED	0.4	
SUBLINED 1	01.3	SUBLINED	2.0	
ADVECTED	0.9	ADVECTED	0.0	
tps net	206.0	TPS NET	2.4	
		· · · · · · · · · · · · · · · · · · ·	→••	

Table 6.1 (Continued)

SURFACE RECESSION			OF POOR QU
DISTANCE 0.00%4 IN. TEMPERATURE DEG F	RECESSION RATE	0.00006 IN/SEC	
T(1)= 760.400 T()= 567.615	T(3)# 468.664	T(4)= 378.480	T(5)4 305.101
T(41= 244.081 T(7)= 200.785	f(8)= 167.511	T(9)= 144.023	T(10) = 129.021
T(11)= 117.454 T(12)= 110.660	T(13)= 106.399	T(14)= 163.777	T(15)= 102.194
T(16)= 101.254 T(17)= 100.709	T(18)= 100.390	f(19)= 105.212	f(20)= 100.113
T(21)= 100.059 T(22)= 100.030	T(23)= 100.015	1(24)= 100,006	T(25)= 100.001
T(26)= 100.000 T(27)= 100.000	T(28)= 100.000		11 80/~ 1001001
NODE POSITION INCHES			
XX(1)= 0.006 XX(2)= 0.044	XX(3)= 0.083	XX(4)= 0.125	XX(5)= 0.167
XX(4)= 0.208 XX(7)= 0.250 XX(11)= 0.417 XX(12)= 0.450	XX(8)= 0.292	xx(9)* 0.333	XX(10)= 0.375
day 111	XX(13)= 0.500	XX(14)= 0.542	XX(15)= 0.583
	XX(18)= 0.708	XX(19)= 0.780	XX(20)= 0.792
mu. m.	XX(23)= 0.917	XX(24)= 0.958	XX(25)= 1.000
XX(26)= 2.500 XX(27)= 2.800	XX(28)= 4.800		
TIME = 400.00000 TIME STEP =	1.03531 ND. OF STEP		
	1.03531 NO. OF STEPS	S = 120	
INTEGRATED HEAT	HEAT RATES		
BTU/SQ.FT	BTU/SQ.FT-SEC	•	
CONVECTED 690.2	CONVECTED	4.1	
RADIATED 187.1	RADIATED	0.8	
NET LOAD 503.1	NET LOAD	3.3	
STORED 135.7	STURED	0.3	
SUBLINED 364.8	SUBLINED	3.0	
ADVECTED 2.6	ADVECTED	0.0	
TPS NET 503.1	TPS NET	3.3	
SURFACE RECESSION			
DISTANCE 0.02025 IN.	RECESSION RATE	0.00015 IN/SEC	
TEMPÉRATURE DEB F		OTTOWN BIN BEE	
Y(1)= 760.400	T(3)= 539.294	T(4)= 448,191	T(5)= 378.192
T(6)= 318.522 T(7)= 268.019	T(8)= 226.433	T(9)= 193.107	7. 10)= 167.105
T(11)= 147.345 T(12)= 132.713	T(13)= 122.146	T(14)= 114,700	T(15)= 109.573
T(16)= 106.122 T(17)= 103.847	T(18)= 102.377	T(19)= 101.445	7(20)= 100.864
T(21)= 100.508 T(22)= 100.291	T(23)= 100.160	T(24)= 100.078	T(25)= 100.020
T(26)= 100.000 T(27)= 100.000	T(28)= 100.000		A MAI TANIATA
NODE POSITION INCHES			
XX(1)= 0.020 XX(2)= 0.048		##43 A4. A 15.M	MANE MEN MEN
ALMA DE LA CALLANTA D	XX(3)= 0.083	XX(4)# 0.125	XX(5)# 0.1A7
XX(6)= 0.208 XX(7)= 0.250	XX(8)= 0.292	XX(4)= 0.125 XX(9)= 0.333	XX(5)= 0.167 XX(10)= 6.375
XX(6)= 0.208	XX(B)= 0.292 XX(13)= 0.500		XX(10)= 6.375
XX(6)= 0.208	XX(8)= 0.272 XX(13)= 0.500 XX(18)= 0.708	XX(9)= 0.333	XX(10)= 6.375 XX(15)= 0.563
XX(6)= 0.208	XX(B)= 0.292 XX(13)= 0.500	XX(9)= 0.333 XX(14)= 0.542	XX(10)= 6.375

Table 6.1 (Continued)

TIME * 500.00000 TIME STEP *	0.73596 NO. OF STEPS # 195	original page in of poor quality
INTEGRATED HEAT OTU/50.FT	HEAT RATES DTV/SO.FT-SEC	OUN GOALIN
CONVECTED 1100.6	CONVECTED 4.1	
RADIATED 269.8	RADIATED 0.8	
NET LGAD 930.8	NET LOAD 3.3	
Stured 163.9 Sublined 663.1	stdréd 0.3 Sublimed 3.0	
ADVECTED 3.8	ADVECTED 0.0	
TPS NET 830.8	TPS NET 3.3	
SURFACE RECESSION		
DISTANCE 0.03672 IN. TEMPERATURE DEB F	recession rate 0.00016 in/se	Ĉ
T(1)= 760.400 T(2)= 689.8	40 T(3)= 598.048 T(4)= 502.:	372 T(5)= 429.213
T(6)= 370.571 T(7)= 319.1		
T(11)= 180.663 T(12)= 160.3		173 t(15)= 122.924
T(16)= 116.072 T(17)= 111.0 T(21)= 102.131 T(22)= 101.3		
T(26)= 100.000 T(27)= 100.0		426 1(25)= 100.144
NODE POSITION INCHES	44 11 801- SANIARN	
		.125 XX(5)= 0.167
		.333 XX(10)= 0.375
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	.542 XX(15)= 0.563 .750 XX(20)= 0.792
		.958 XX(25)= 1.000
XX(26)= 2.500 XX(27)= 2.	800 XX(28)= 4.800	
Time = 400.00000 time step =	0.14777 NO. OF STEPS # 421	
S. Land. Along a state of a new Assessment		
integrated heat BTU/S0.FT	NEAT RATES BTU/80.FT-SEC	
GONVECTED 1509.3	CONVECTED 4.1	
RADIATED 352.4	RADIATED 0.8	
MET LOAD 1156.9	NET LDAD 3.2	
STORED 190.2 SUBLINED 962.3	STORED 0.3 Sublined 3.0	
ADVECTED 4.4	ADVECTED 0.0	
TPS NET 1156.9	TPS NET 3.2	
SURFACE RECESSION DISTANCE 0.05322 IN.	recession rate 0.00017 in/se	it.
TEIPÉRATURE DEG F		
T(1)= 760.400 T(2)= 734.6 T(6)= 411.893 T(7)= 360.9		
7(11)= 212.566		
T(16)= 129.577 T(17)= 121.3		
T(21)= 105.492 T(22)= 103.4	191 T(23)= 102.366 T(24)= 101.	
Ť(25)= 100.000 Ť(27)= 100.0	300 T(22)= 100.000	

Table 6.1 (Continued) 113

NODE POSITIO					
XX(1)= 0		0.099 XX(;	3)# 0.683 xx(4)* 0.125	XX(5)= 0.167
XX(6)= 0).208 XX(7)=	0.290 XX(8		9)# 0.333	
XX(11)= 0	.417 XX(12)=	0.458 XX 1			
	1.625 XX(17)=	******	2,02,0	14)# 0.542	XX(15) # 0.563
	*****			19)= 0.750	XX(20) = 0.792
).833 XX(22)=	0.875 XX (25		24)= 0.998	XX(25)= 1.000
XX 261= 2	1.500 XX(27)=	2.800 XX 26	3)= 4.800		HH1 001 \$1000

NODE DROPPED FROM SUBLIMER-ABLATUR MODEL

ORIGINAL PAGE CO OF POOR QUALITY

(G)

ITHIS IS THE CONFIGURATION FOR BODY PT.

Table 6.1 (Continued)
114

TIME # 700.00000	TIME STEP = 0.466	NO. OF STEPS	= 543	
INC ANDIADAD	INE DIE - ALLES	av nu ur sigra	- 770	
INTEGRATED HEAT BTU/80.FT		Heat rates BYV/80.FT-8EC		
CONVECTED 1978.8 RADIATED 435.1 WET LOAD STORED 214.5 SUBLINED 1323.4 ADVECTED 5.8	1543.7	radiated Net Load Stured Sublined	5.8 0.8 5.0 0.2 4.7 0.0	
TPS NET	1543.7	TPS NET	5.0	
T(6)= 396.113 T(T(11)= 215.415 T(121= 192.687 Tt	8)= 309.324 13)= `73.642	0.00020 IN/SEC T(4)= 514.310 T(9)= 273.413 T(14)= 157.877	T(5)= 449.099 T(10)= 242.208 T(15)= 144.984
			T(19)= 114.532	T(20)= 110.537
T(26)= 100.000 T(NODE POSITION INCHES XX(1)= 0.073 X	27)= 100.000 X(2)= 0.089	XX(3)= 0.129	T(24)= 101.547 XX(4)= 0.167	T(25)= 100.000 XX(5)= 0.208
		XX(8)= 0.333 XX(13)= 0.542	XX(9)= 0.375 XX(14)= 0.563	XX(10)= 0.417 XX(15)= 0.625
XX(16)= 0.667 X XX(21)= 0.675 X	X(17)= 0.708	XX(18)= 0.750 XX(23)= 0.998	XX(19)= 0.792 XX(24)= 1.000	XX (20)= 0.633 XX (25)= 2.500

MODE BROPPED FROM SUBLINER-ABLATOR MODEL

THE PROPERTY OF THE PROPERTY O

Table 6.1 (Continued)

	17
,	

TIME = 800.00 INTEGRATED HEAT BTU/BO.FT	000 TIME	STEP =	0.97308	NO. OF STEPS HEAT RATES STU/SS.FT-SEC	3 =	711	ORIGINAL PACE IN OF POOR QUALITY
CONVECTED RADIATED NET LOAD STORED SUBLINED	2789.9 517.8 240.5 2021.9 8.7	2272.1 2272.1		CONVECTED RADIATED NET LOAD STORED SUBLINED ADVECTED TPS NCT	12.0 0.8 0.3 10.9	11.2	
TEMPERATURE DE T(1)= 760.40 T(6)= 383.46 T(11)= 216.07 T(16)= 138.09 T(21)= 108.77 T(26)= 100.00 HODE POSITION	.11191 IM. B F 0 T(8 T(16 T(17 T(17) 18) 100 1MCHES	2)= 673.709 7)= 340.771 2)= 194.683 (7)= 129.532 12)= 109.772	†(†(RECEBSION RATE	†(†(†(†(.00039 IN/SEC 4)= 493.329 9)= 269.926 14)= 161.269 19)= 116.968 24)= 100.002	
XX(6)= 0. XX(11)= 0. XX(16)= 0. XX(21)= 0.	292 XX 506 XX 708 XX		33 42 50	XX(8)= 0.373 XX(13)= 0.58 XX(18)= 0.793 XX(23)= 1.00	3 2	XX(9)= 0.417 XX(14)= 0.623 XX(19)= 0.623 XX(24)= 2.50	3 XX(15)= 0.667 3 XX(20)= 0.875

ITHIS IS THE CONFIGURATION FOR BODY PT.

NODÉ DROPPED FROM SUBLINER-ABLATOR MODEL

Table 6.1 (Continued)

ORIGINAL PAGE IN OF POOR QUALITY

Table 6.1 (Continued)

TINE # 900	.00000	tine bye	P m	0.00153	NO.	O F STEPS		877	,		ORI OF	GINAL POOR	QUALITY
integrated he btu/80.ft	ÁT				HEÁT RÁ DTU/BÓ.I							•	**************************************
CONVECTED RADIATED NET LOAD	4369.1 600.9		.6		CONVECTO RADIATED NET LOAD)	17.3 0.8	16.	.	r			
STORED SUBLINED ADVECTED	275.7 3476.9 15.9	į.			STURED SUBLINE ADVECTE)	0.4 16.0 0.1	101	•				
tpe met		3768	.6		TPS NET	-	•••	16.	5				
SURFACE RECES DISTANCE TEMPERATURE DI	0.19232 IN.				recessi(N RATE	0.0	00080 IN	/SEC				
T(1)= 760.4(T(6)= 337.9(50 t(21= 63			3)= 522.3			()= 440.				383.46	
T(11)= 195,4	- :	7)= 29 12}= 17			3)= 267,4 3)= 163,2		11 9	9)= 239.	678			215.83	
T(16)= 131.67	73 11	17)= 12			3)= 118.4			ii= 150. ii= 113.				140.35	
T(21)= 105.76 MODE POSITION	30 T (22)= 100		1(2	100.0	07	11 24)= 100.	000	11	Z ()=	107.33	2
XX(1)= 0.1		K(2)=	0.214	XX	3)=	0.250	X	((4) <u>=</u>	0.292		447	ď) a	* 444
XX(6)= 0.3		K(7)=	0.417	XX		0.458	X)		0.500				0.333
XX(11)= 0.5		K(12)=	0.625			0.667		(14)=	0.708			10)= 15)=	0.542 0.750
XX(16)= 0.7 XX(21)= 1.0		((17)=	0.833	XX (18)=	0.879		(19)=	0.917				0.750 0.958
MAI 21/4 1.0	NU X	((22)=	2.500	XX (23)=	2.800	XX	(1 24)=	4.600				******

NODE DROPPED FROM SUBLINER-ABLATOR NUDEL

ORIGINAL PAGE IS OF POOR QUALITY

21, Ontario		tó thin skin	0.300000 IN.
<u>22.</u> (J. 1	0.140000 IN. INCOM. 6	17	1
111111 1 1 1 1 111111	722222 2 2 Al.7075-1 2 222222	T6 Z STANDOFF	I I 2.000000 IN. I
23. O****	0.190000 IN. CTD.CULU		1 1

NODE BROPPED FROM SUBLINER-ABLATOR NODEL

Table 6.1 (Continued)

2. 0 3. 0	# # # # # # # # # # # # # # # # # #	*************	228 257535577 223 257 223 5	<u>.</u>
4. 0 5. 0 6. 0 7. 0 8. 0 10. 0 11. 0 12. 0 13. 0 14. 0 15. 0		B-STĞ.CÜRK	ABLATOR SUBLINER	1 1 1 1 0.741394 IN. 1 1 1 1 1
am 19, (b. mar.		. CTD.COLUMB	nemecka černe dátka s	1
			RADIATION GAP	1 1.500000 IN.
200	0.100000 IN	. AL.7075-T6		Í I
==21. D=====		AL.7075-16	THIN SKIN	0.300000 IN.
-211		. INCOML 617		1
111111	121222 1			I I 1
2 2 222122	i i iiii		z standoff	2.000000 IN.
ans 22. ()-ansatz	0.180000 IN.	CTD.COLUMB		<u>i</u>

TIME = 1000	.00000	time step =	0.06152 NO.	of Steps =	1043
INTEGRATED HE BTU/SQ.FT	AT		Heat Rati êtu/sg.f	es T-sec	
CONVECTED RADIATED NET LOAD STORED SUBLIMED ADVECTED TPS NET	6115.4 683.7 319.7 5087.1	2 5432.2 1	CUNVECTE RADIATED NET LIDAD STURED SUBLIMED ADVECTED TPS NEY		16.7 16.7
			Table 6.1	(Contir	ued)

ORIGINAL PAGE 18 ALITY

SURFACE RECESSION DISTANCE 0.28137	in.	RECESSION RATE	0.00087 IN/SEC	OF POOR QUA
TEMPERATURE DEG F 1(1)= 760.400 1(6)= 310.631 1(11)= 179.223 1(16)= 125.466 1(21)= 100.016	T(21= 644.619 T(7)= 273.095 T(12)= 164.511 T(17)= 119.116 T(22)= 100.000	T(3)= 513.528 T(6)= 242.609 T(13)= 152.110 T(18)= 113.765	T(4)= 420.801 T(9)= 217.590 T(14)= 141.695 T(19)= 109.169	T(5)= 358.621 T(10)= 196.701 T(15)= 132.842 T(20)= 100.016
MODE POSITION INCHES RR(1)= 0.281 RR(6)= 0.456 RR(11)= 0.667 RR(16)= 0.679 RX(21)= 2.600	XX(2)= 0.299 XX(7)= 0.500 XX(12)= 0.708 XX(17)= 0.917 XX(22)= 4.800	XX(3)= 0.333 XX(8)= 0.542 XX(13)= 0.750 XX(18)= 0.938	XX(4)= 0.375 XX(9)= 0.583 XX(14)= 0.792 XX(19)= 1.000	XX(5)= 0.417 XX(10)= 0.625 XX(15)= 0.833 XX(20)= 2.500

NODE DROPPED FROM SUBLINER-ABLATOR MODEL

NODE DROPPED FROM SUBLINER-ABLATOR MODEL

Table 6.1 (Continued)

ORIGINAL PAGE 169 OF POOR QUALITY

4 8			-	
1. Qualitation 2. Q 3. Q 4. Q 5. U	eterikin printensem jilgagaji	- 		1 1 1 1
6. 0 7. 0 8. 0 8. 0		B-STG.ČÚRK	ablator Subliner	1 1 0.458035 in.
1. 0 2. 0 3. 0 4. 0				i i i
18. 0 16. 0 17. 0 *******	owiek ú koken k plády.	entidaktin de	sanktian puturitanisis	1
				•
			RADIATION GAP	1 1.500000 IN. I
IR. Astronomic	0.100000 IN.	AL.7075-16		1
		AL.7075-TA	thin skin	0.300000 IN.
19. Onteres	0.140000 IN.			1
11111 1	titiz			1
i i iiiiii	i 1 11111	,	2 STANDOFF	2.000000 IN.
	0.190000 IN.	CTD.COLUMB	tarian da di Girafi (firrito et directoria) de ceres de la descripción de la ceres de la descripción de la cer	· I

THE .	1100.00000	tine step =	0.34009 NO. OF S	ार्छ =	1220
integrat BTU/50.F			HEAT RATES STU/50.FT-9E	ē	
CONVECTE RADIATED NET LOAD STURED SUBLINED ADVECTED	765) 363) 6535	.8 6936.0	CONNECTED RADIATED NET LOAD STORED SUBLINED ADVECTED	12.9 0.8 0.4 11.5 0.1	12.0
TPB NET		6936.0	TPS NET		12.0

Table 6.1 (Continued)

SURFACE RECESSION DISTANCE 0.36147 TEMPERATURE DEG F	IN.	RECESSION RATE	0.66080 IN/SEC	
T(1)= 760.400 T(6)= 294.890 T(11)= 166.725 T(16)= 119.127 MODE POSITION INCHES	T(2)= 637.213 T(7)= 256.290 T(12)= 153.619 T(17)= 113.425	T(3)= 505.053 T(8)= 226.039 T(13)= 142.694 T(18)= 100.032	T(4)= 410.413 T(9)= 201.990 T(14)= 133.516 T(19)= 100.032	T(5)* 344.900 T(10)* 182.585 T(15)* 125.750 T(20)* 100.000
XX(i)= 0.36i XX(6)= 0.542 XX(ii)= 0.750 XX(i6)= 0.958	XX(2)= 0.382 XX(7)= 0.583 XX(12)= 0.792 XX(17)= 1.000	XX(3)* 0.417 XX(6)* 0.625 XX(13)* 0.633 XX(18)* 2.500	XX(4)= 0.458 XX(9)= 0.667 XX(14)= 0.675 XX(19)= 2.600	XX(5)= 0.500 XX(10)= 0.708 XX(15)= 0.917 XX(20)= 4.800

NODE DROPPED FROM SUBLINER-ABLATOR MODEL

ITHIS IS THE CONFIGURATION FOR BODY PT.

Table 6.1 (Continued)

(4)

OF POOR QUALITY

TIME = 1200.00000 .	time step =	0.16211 NU. OF STEPS	# 1384	
INTEGRATED HEAT BTV/SQ.FT		HEAT RATES STU/90.FT-SEC		
GONVECTED 8741 RADIATED 846 NET LOAD STORED 400 SUBLINED 7444 ADVECTED 39	1.5 7893.0 3.7	CONNECTED RADIATED NET LOAD STORED SUBLINED ADVECTED	7.8 0.9 7.0 0.4 6.6 0.0	
TPS NET	7893.0	tps net	7.0	
DISTANCE 0.41182	IR.	RÉCESSION RATE	0.00090 IN/SEC	
TEMPERATURE DEG F	1(2)= 680.492	T(3)= 595.839	T(4)= 492.119	T(5)= 380.072
T(6)= 323.149 T(11)= 171.352	T(7)= 277.637	T(8)= 241.483	1(9)= 212.780	T(10)= 189.906
T(16)= 118.715 HODE POSITION INCHES	T(12)= 156.687 T(17)= 100.054	T(13)= 144.518 T(18)= 100.054	T(14)= 134.433 T(19)= 100.002	T(15)= 125.957
XX(1)= 0.412 XX(6)= 0.563 XX(11)= 0.792	XX(2)= 0.426 XX(7)= 0.625 XX(12)= 0.635	XX(B)= 0.667	XX(4)= 0.500 XX(9)= 0.708 XX(14)= 0.917	XX(5)= 0.542 XX(10)= 0.750 XX(15)= 0.958

NOOE DROPPED FROM SUBLINER-ABLATOR NOOEL

Table 6.1 (Continued)

7909.9

41.8

8391.7

ADVECTED

TPS NET

ORIGINAL PAGE TO OF POOR QUALITY,

Table 6.1 (Continued) 128

2.9

0.0

3.2

SUBLINED

ADVECTED

TPS NET

ORIGINAL PAGE (S OF POOR QUALITY

SURFACE RECESSION DISTANCE 0.43749	1W.	RECEBBIÓN RATE	0.00026 IN/SEC	
TEMPERATURE DEG F	T(2)= 655.889	T(3)= 545.233	T(4)= 457.768	1(5)= 391.672
T(1)= 760.400 T(6)= 337.706	1(7)= 292.214	1(6)= 254.516	1(9)= 223.571	T(10)= 198.309
†(11)= 177.716	T(12)= 160.885	t(13)= 147.027	T(14)= 135.474	t(13)= 125.657
T(16)= 100.086	1(17)= 100.086	T(18)= 100.004		
HODE POSITION INCHES				11(5)= 0.583
XX(1)= 0.437	XXI 21= 0.462	XX(3)= 0.500	11 4) 0.542	XX(\$)= 0.583 XX(10)= 0.792
xx(6)# 0.625	XX(7)= 0.667	XX(8)= 0.708	XX(9)= 0.750 XX(14)= 0.958	XX(15)* 1.000
XX(11)= 0.833	XX(12)= 0.875	XX(13)= 0.917 XX(18)= 4.866	YY1 141- 41400	ANY ANY
XX(16)= 2.500	XX(17)= 2.800	XX(101= 4:000		
	tine step =	0.92102 NO. OF STEP	8 = 1676	
TIME = 1400.00000	ITHE SIEL -	V17E10E 101 0 5.2		
INTEGRATED HEAT		heat rates		
BTU/SQ.FT		BTV/SQ.FT-SEC		
			4 🖷	
*****	560.4	CONVECTED RADIATED	1.2 0.6	
-	013.9	NET LOAD	0.4	
NET LOAD	8566.6 466.2	STORED	0.2	
	1057.9	SUBLINED	0.1	
ADVECTED 0	42.4	ADVECTED	0.0	
TPS NET	8566.5	tps net	0.4	
SURFACE RECESSION	à du	RECERSIÓN RATE	0.00008 IN/SEC	
DISTANCE 0.445	is in.	NEVESTAR NATE		
TÉMPERATURE DEB F	T(2)= 691.968	T(3)= 596.517	T(4)= 509.654	T(5)= 441.324
7(6)= 386.024	T(7)= 337.964	1(8)= 296.053	1(9)= 260.032	7(10)= 229.423
T(11)= 203.613	T(12)= 181.932	t(13)= 163.70 ⁷	T(14)= 148.292	T(15)# 135.091
T(16)= 100.131	T(17)= 100.131	T(18)= 100.010		
NOOE POSITION INCH				2 XX(5)= 0.5P3
XX(1)= 0.446	XX(2)= 0.46		XX(4)= 0.54	• • • • • • • • • • • • • • • • • • •
XX(6)= 0.625	XX(7)= 0.66			
XX(11)= 0.833	XX(12)= 0.87		*****	D WY TAL - FIAAA
XX(16)= 2.500	XX(17)= 2.80) XX(18)= 4.800		

INITIAL HASS = 28.83250 (LBM/SG.FT.)

H

A

(B)

```
TRATET
                     0.000
                               TETOP #
                                           1410.000
                                                        TIMPT .
                                                                    100,000
     DTIM
                    10.000
                               STAB .
                                             2.000
                                                        TOL .
                                                                      0.001
                                                                                BET
                                                                                                0.500
     NOP
                               NEXT .
                     1
                                             20
                                                        NSTP D
                                                                                IPFLAG .
                                                                    3000
1
          TABLES
       HRSI COAT - MAT NO.
 MAXIMAM TEMPERATURE
                              2300.40 DEB F
    TEP.
                  DESITY
   (DED F)
                                                                         ORIGINAL PAGE IS
                (LBM/CU.FT)
                                                                        OF POOR QUALITY
 -0.4996E+03
                 0.1040E+03
  0.9540E+04
                 0.1040E+03
    TEP.
                SPECIFIC HEAT
   (DEB F)
               (BTU/LBM-DEG F)
 -0.4596E+03
                 0.1500E+00
 -0.2496E+03
                 0.1500E+00
 -0.1496E+03
                 0.1700E+00
                 0.1900E+00
  0.4000E+00
  0.2504E+03
                 0.2150E+00
  0.5004E+03
                 0.2400E+00
  0.1000E+04
                 0.2850E+00
  0.2000E+04
                 0.3450E+00
  0.3000E+04
                 0.3900E+00
    TEM.
                CONDUCTIVITY
   (DEG F)
              (BTU/FT-S-DEG F)
 -0.459&E+03
                 0.1181E-03
 -0.2496E+03
                 0.1181E-03
 -0.1496E+03
                 0.1250E-03
  0.4000E+00
                 0.1353E-03
  0.2504E+03
                 0.1528E-03
  0.5004E+03
                 0.167E-03
  0.1000E+04
                 0.1996E-03
  0.2000E+04
                 0.2453E-03
  0.3000E+04
                 0.3279E-03
    TEP.
                 EMISSIVITY
   (DED F)
              (DIPENSIONLESS)
 -0.4596E+03
                 0.8500E+00
  0.9540E+04
                 0.9500E+00
       L1-900
                   - MAT NO. 5
```

Table 6.2 Output For Example Case Two (Table 5.9) 130

ORIGINAL PART UN OF POOR QUALITY

2300.40 DEB F

1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W	77 11 WY		
TEIP. (DEC F)	DENSITY		
(MEG F)	(LBH/CU.FT)		
-0.4594E+03	0.9000E+01		
0.9540E+04	0.9000E+01		
ief.	SPECIFIC HEA	T	
(DEG F)	IBTU/LBH-DEO	F)	
-0.459££+03	0.7000E-01		
-0.2496E+03	0.7000E-01		
-0.149&E+03	0.1050E+00		
0.4000E+00	0.1500E+00		
0.2504E+03	0.2100E+00		
0.5004E+63	0.2520E+00		
0.1000E+04	0.2980E+00		
0.1500E+04	0.3000E+00		
0.1750E+04	0.3030E+00		
0.3000E+04	0.30306+00		

CONDUCTIVITY (BTV/FT-S-DEG F)

TEMP. PI	ressure (LB/S).Ft)				
(DED F)	0.00	0.21	2.12	21.16	211.60	2116.00
-0.459&E+03 -0.249&E+03 0.4000E+00 0.2504E+03 0.5004E+03 0.7504E+03 0.1000E+04 0.1250E+04 0.1750E+04	0.1389E-05 0.1389E-05 0.2555E-05 0.2555E-05 0.3472E-05 0.6472E-05 0.6555E-05 0.1155E-04 0.1575E-04	0.1389E-05 0.1389E-05 0.2083E-05 0.2555E-05 0.3472E-05 0.4861E-05 0.647. \ 05 0.8555E-05 0.1155E-04 0.1575E-04	0.2083E-05 0.2083E-05 0.2777E-05 0.3472E-05 0.4636E-05 0.7639E-05 0.9722E-05 0.1694E-04	0.4166E-05 0.4166E-05 0.5083E-05 0.6250E-05 0.7668E-05 0.1088E-04 0.1366E-04 0.1714E-04 0.2130E-04	0.6060E-05 0.6060E-05 0.6944E-05 0.8777E-05 0.1111E-04 0.1366E-04 0.1667E-04 0.2014E-04 0.2430E-04 0.2944E-04	0.6472E-05 0.6472E-05 0.7636E-05 0.9472E-04 0.1202E-04 0.1627E-04 0.2172E-04 0.2616E-04 0.3136E-04
0.2000±+04 0.2300E+04 0.2900E+04 0.2900E+04 0.3000E+04	0.2039E-04 0.2683E-04 0.3222E-04 0.4277E-04 0.5277E-04	0.2039E-04 0.2683E-04 0.3222E-04 0.4277E-04 0.5277E-04	0.2172E-04 0.2833E-04 0.3416E-04 0.4500E-64 0.5444E-04	0.2616E-04 0.3222E-04 0.3861E-04 0.5000E-04 0.6680E-04	0.3527E-04 0.4305E-04 0.4972E-04 0.6111E-04 0.7277E-04	0.3777E-04 0.4639E-04 0.5369E-04 0.6728E-04 0.9055E-04

TEMP. EMISSIVITY (DET F) (DIMENSIONLESS)

-0.4596E+03 0.1000E+01 0.9540E+04 0.1000E+01

AL.7075-T6 - NAT NO. 1

TABLE 6.2 (Continued)

```
E
```

(+)

ORIGINAL PAGE 19' OF POOR QUALITY

		•
naxinum tenp	ERATURE .	200.40 DER F
TEMP. (DED F)	DENSITY (LBH/CU.FT)	
-0.4596E+63 0.4546E+64	0.1750E+03 0.1750E+03	
TÉIP. (DEG F) .	SPECIFIC HEAT (BTU/LBH-DED F)	•
-0.4596E+03 -0.1496E+03 0.4000E+00	0.1700E+00 0.1700E+00 0.1950E+00	
0.2004E+03 0.8604E+03 0.1000E+04 0.9540E+04	0.2100E+00 0.2750E+00 0.2750E+00	
	0.2750£+00	
TEMP. (DEG F)	CONDUCTIVITY (BTV/FT-8-DEG F)	
-0.459&E+03 -0.199&E+03 0.4000E+00	0.1400E-01 0.1400E-01 0.2000E-01	
0.3004E+03 0.4004E+03 0.9004E+03	0.2500E-01 0.2700E-01 0.2700E-01	
TÓP.	ENISSIVITY	
(DEB F)	(DIMENSIONLESS)	
-0.4596E+03 0.9540E+04	0.1200E+00 0.1200E+00	
INCOM	617 - MAT NO. 1	7
MAXIMUM TEMPER	lature i	900.40 DEG F
TEP. (DEB F)	DENSITY (LBH/CV.FT)	
-6.4596E+03 0.9540E+04	0.5219E+03 0.5219E+03	

TEMP. (DEG F)

-0.4596E+03

SPECIFIC HEAT (BTU/LBN-DEB F)

0.1000E+00

Table 6.2 (Continued)

```
0.7840E+02
                0.1000E+00
0.20042+03
               0.1040E+00
0.4004E+03
               0.1110E+00
0.6004E+03
                0.1170E+00
                                                                     ORIGINAL PAGE ES
 0.1000E+04
                0.1310E+00
                                                                     OF POOR QUALITY
 0.1200E+04
                0.13/0E+00
 0.1400E+04
                0.1440E+00
 0.1690E+04
                0.1800E+00
 0.1800E+04
                0.1570E+00
 0.2000E+04
                0.1630E+00
 0.9540E+04
                0.1630E+00
   TOP.
               CONDUCTIVITY
  (DEB F)
             (BTV/FY-S-DEG F)
                0.2176E-02
-0.4596E+03
 0.7840E+02
                0.2176E-02
 0.2004E+03
                0.2339E-02
 0.4004E+03
                0.2616E-02
                0.2894E-02
 0.6004E+03
 0.1000E+04
                0.3449E-02
 0.1200E+04
                0.3727E-02
                0.4005E-02
 0.1400E+04
 0.1600E+04
                0.4282E-02
 0.1800E+04
                0.4560E-02
 0.2000E+04
                0.4839E-02
 0.95402+04
                0.4838E-02
   TEP.
                ÉMISSIVITY
  (DEG F)
              (DIPENSIONLESS)
 -0.4596E+03
                0.1500E+00
 0.9540E+04
                0.1500E+00
       TITANIUN
                   - MAT NO.
HAXIMUM TEMPERATURE
                               600.40 DEG F
    TEM.
                  DENSITY
   (DEG F)
                (LBH/CU.FT)
 -0.4596E+03
                 0.5120E+03
                 0.5120E+03
  0.9540E+04
    TEP.
                SPECIFIC HEAT
   (DEC F)
               (BTU/LBH-DEG F)
 -0.4596E+03
                 0.9600E-01
 -0.1996E+03
                 0.9600E-01
  0.4000E+00
                 0.1250E+00
  0.4004E+03
                 0.1460É+00
  0.1200E+04
                 0.1600E+00
                 0.1600E+00
  0.9540E+04
                                                           (Continued)
                                         Table 6.2
```

Tem. (Dec f)	CONDUCTIVITY (BTU/FT-8-DEG F)		
-0.459 <i>6</i> £+03	0.1200E-02		
0.7040E+62	0.1200E-02		
0.50042+03	0.1500E-02		
0.1000E+04	0.2900E=02		
0.9540E+04	0.29006-02		
TĐÝ.	émissivitý		
(DEG F)	(DIFENSIONLESS)		
-0.4996E+03	0. j200E+00		
0.95405+04	0.12005+00		

ORIGINAL PARE IST

TIME (SEC)	FILM COEF. (LBM/Så.FT-SEC)	REC ENTHALPY (BTU/LOH)	Pressure (LBF/80.FT)	
0.00006400	0.6450E-05	0.1126E+05	0.1252E-01	
Ö.5000E+02	0.1221E-04	0.1124E+03	0.3449E-01	
Ŏ.1000€+Ö3	0.2502E-04	0.1123E+05	0.1090E+00	
0.1290E+03	0.3631E-04	0.1123E+09	0.1992E+00	
0.1500E+03	0.5367E-04	0.112年+05	0.3777E+00	
0.17506+03	0.6009E-04	0.11236+05	0.7313E+00	
0.2000E+U3	0.1203E-03	Ö.1124E+05	0.1440E+01	
0.2250E+03	0.1795E-03	0.1127E+05	0.2802E+01	
0.2750E+03	0.2929E-03	0.1113E+05	0.77492+01	
0.3000E+03	0.3015E-03	0.1109E+05	0.1126E+02	
0.3500E+03	0.3710E-03	0.1092E+05	0.1779E+02	
0.4000E+03	0.3974E-03	0.1060E+05	0.2004E+02	
0.4500E+03	0.410BE-03	0.1027E+03	0.2121E+02	
0.5000E+03	0.4259E-03	0.4966E+04	0.2314E+02	
0.5290E+03	0.4325E-03	0.9769E+04	0.2379E+02	
0.5560E+03	0.440Æ-03	0.9577E+04	0.2470E+02	
0.5980E+03	0.4515E-03	0.9270E+04	0.2599E+02	
0.6400E+03	0.4661E-03	0.8966E404	0.2906E+02	
0.6540E+03	0.5320E-03	0.8876E+04	0.2915E+02	
0.6820E+03	0.6853E-03	0.8680E+04	0.3124E+02	
0.7100€+03	6.7182E-03	Ö.8450E+04	0.310 5E+0 2	
0.7380E+03	0.8937E-03	0.6228E+04	0.33036+02	
0.7520E+03	0.10136-02	0.81062+04	0.3425E+02	
0.7660E+03	0.1148E-02	0.7984E+04	0.35652+02	
0.7800E+03	0.1329E-02	0.7863E+04	0.373BE+02	
0.7940E+03	0.1540E-02	0.773BE+04	0.3927E+02	
0.8080E+03	0.1784E-02	0.7610E+04	0.4128E+02	
0.8220E+03	0.2090E-02	0.7476E+04	0.4368E+02	
0.8500E+03	0.2369E-02	0.71492+04	0.4938E+02	
0.8790E+03	0.2615E-02	0.6779E+04	0.5542E+02	
0.9060E+03	0.2856E-02	0.6385£+04	0.6202E+02	
0.9760E+03	0.3470E-02	0.5284E+04	0.7639E+02	
0.1004E+04	0.3900E-02	0.4800E+04	0.8486E+02	
0.103EE+04	0.4267E-02	0.4291E+04	0.89845+02	
0.1060E+04	0.4461E-02	0.3797E+04	0.9285E+02	
0.1074E+04	0.4484E-02	0.356EE+04	0.9301E+02	
0.1102E+04	0.4499E-02	0.3117E+04	0.93022+02	
0.1116E+04	0.4557E-02	0.2903E+04	0.92636+02	
0.11446+64	0.4844E-02	0.249&E+04	0.94076+02	
0.11722+04	0.513Œ-02	0.2125E:04	0.9565E+02	
0.1200E+04	0.5153E-02	0.1813E+04	0.9244E+02	
0.1260E+04	0.5462E-02	0.1253E+04	0.8645E+02	
0.1290E+04	0.5814E-02	0.1034E+04	0.8521E+02	
0.1350E+04	0.6301E-02	0.6930E+03	0.6369E+02	
0.1380E+04	0.6169E-02	0.5627E+03	0.90326+02	
0.1410E+04	0.5844E-02	0.4545E403	0.7643E+02	
			~ · · · · · · · · · · · · · · · · · · ·	

Table 6.2 (Continued)

ORIGINAL PAGE 165 OF POOR QUALITY

			ione berini Dy point				
TINIT =	100.0	o déa f	TSINK =	0.00 DEG F	FIJ =	1.000	
	a substituti						
			1 NUMBER =		M SURFACE =	0.000000E+00 IN.	
		ethic tipe	munder =	i SLAB			
		MATERIAL	i = HRSI CO	AT SER			
					M SURFACE =	Ö.100000E+ÖÖ 1N.	
	wship		*	******	u Armeitė "	A 250ANAM.KA 411	
	MUDE	MANUSTR =	NUMBER =	DISINGE PRO	m Burtage =	0.100000E+00 IN.	
		STRUCTURE	TVPE =	1 SLAB			
			i = L1-900				
					m surface =	0.162500E+00 IN.	
	MAR	₩ ₩₽₹ Ŭ =	9	Atôtame en	m didease =	A 1456ARLAN IN	
	MUNC	COMMICTOR	MARKE =	A STANFOLD	m SURFACE -	0.162500E+00 IN.	
		STRUCTURE	TYPE =	3 1 SLAS	}		
		MATERIAL	1 = L1 - 900				
	NODE	number =	4	DISTANCE FRO	m surface =	0.225000E+00 IN.	
	MODE	MARKER	4	DISTANCE FRO	M SLRFAČE =	0.225000E+00 IN.	

				4 1 SLAI	3		
		MATERIAL	1 = LI-900				
	NODE	MANBER =	5	DISTANCE FRO	M SURFACE =	0.287500E+00 IN.	
	NODE	NUMBER =	5	DISTANCE FR	M SURFACE =	0.287500E+00 IN.	
		COMOUCTUR	MUNBER .	5			
				1 SLA	3		
			1 = L1-900			n dekesah, ki du	
	MUDE	WAUREH =	6	DISTANCE PR	um surface *	0.350000E+00 IN.	
	MANE	Markey =	A	DISTANCE EN	m great =	0.350000E+00 IN.	
	77666	CONDUCTOR	MARBER =	A A		41240447F.40 9W	
				1 SLA	}		
		MATERIAL	1 = L1-900				
	NODÉ	number =	7	distance fr	om surface *	0.412500E+00 IN.	
	MODE	MAKRER =	7	DISTANCE FR	IN SURFACE =	0.412500E+00 IN.	
	* ************************************		NUMBER =				
		STRUCTURE	TYPE =	1 SLA	8		
		MATERIAL	1 = L1-900)		الاند ملاشى شىمىسىمى الانتقال بىر ئالاند ملاشى شىمىسىم الانتقال بىر	
	KUE	MUNUER .	8	DISTANCE FR	un surface =	0.475000E+00 IN.	

(b)

ORIGINAL PAGE TO OF POOR QUALITY

STRUCTURE DEFINITION

Tablé 6.2 (Continued)

ORIGINAL PAGE &

OF POOR QUALITY

NODE NUMBER = DISTANCE FROM SURFACE = 0.475000E+00 IN. CONDUCTOR NUMBER = STRUCTURE TYPE = 1 MATERIAL 1 = L1-900 NODE NUMBER = 9 DISTANCE FROM SURFACE . 0.537900E+60 IN. DISTANCE FROM SURFACE = NODE NUMBER . 0.537500E+00 IN. CONDUCTOR NUMBER = STRUCTURE TYPE -SLAB MATERIAL 1 = LI-900 NOOE HUMBER = 10 DISTANCE FROM SURFACE = 0.600000E+00 IN. NOOE NUMBER = 10 DISTANCE FROM SURFACE = 0.600000E+00 IN. CONDUCTOR NUMBER # 10 STRUCTURE TYPE . 3 HONEY COME MATERIAL 1 = AL. 7075-16 MATERIAL 2 = AL. 7075-T6 MATERIAL 3 = AL.7075-16 NODE NUMBER = 11 DISTANCE FROM SURFACE = 0.135000E+01 IN. NODÉ HURBER # 11 DISTANCE FROM SURFACE = 0.135000E+01 IN. CONDUCTOR NUMBER = 11 STRUCTURE TYPE = CORRUBATED MATERIAL 1 = INCONL 617 MATERIAL 2 = INCOL 617 MATERIAL 3 = TITANIUM NODE NUMBER = 12

> Table 6.2 (Continued)

DISTANCE FROM SURFACE = 0.235000E+01 IN.

HET LUAL

SUBLIKED

ADVECTED

TPS NET

STORED

Table 6.2 (Continued)

NET LOAD

SUBLINED

ADVECTED

TPS NET

STURED

0.0

0.0

0.0

0.0

0.0

0.0

Ö.Ö

0.0

0.0

Q.Õ

0.0

SURFACE RECESSION DISTANCE 0.00000 TEMPERATURE DEG F) IN.	RECEBBION RATE	0.00000 IN/SEC	ORIGINAL PAGE 17 OF POOR QUALITY
T(1)= 100.000 T(6)= 100.000 T(11)= 100.000	T(2)= 100.000 T(7)= 100.000 T(12)= 100.000	T(3)= 100.000 T(8)= 100.000	T(4)= 100.000 T(9)= 100.000	T(5)= 100,000 T(10)= 100,000
TIME = 100.00000	tine step •	0.98908 NO. OF STEPS	· 41	
integrated heat BTV/SQ.FT		heat rates btu/sq.ft-sec		
CONVECTED RADIATED NET LOAD STORED	15.3 3.0 12.3	CONVECTED RADIATED NET LOAD STURED	0.3 0.0 0.2	
sublined advected tha net	0.0 0.0 12.3	Sublined Advected TPS NET	0.0	
SURFACE RECESSION DISTANCE 0.000 TEMPERATURE DEG F	50 IN.	RECESSION RATE	0.00000 IN/SEC	
T(1)= 169.266 T(6)= 103.731 T(11)= 100.000	T(2)= 162.265 T(7)= 101.655 T(12)= 100.000	T(3)= 132.831 T(8)= 100.668	†(4)* 116.628 †(9)* 100.232	T(5)= 108.067 T(10)= 100.001
TIME = 200.0000	0 tihe step =	1.02477 NO. OF STEE	9S = 62	
INTEGRATED HEAT BTU/SQ.FT		HEAT RATES 11TU/SQ.FT-SEC		
CONVECTED RADIATED NET LOAD STORED SUBLINED	61.0 13.8 67.2 67.2	CONVECTED RADIATEN NET LOAD STORED SUBLINED	1.3 0.3 1.1 1.0	•
ADVECTED TPS NET	0.0 47.2	ADVECTED TPS NET	0.0	
	000 IN.	RECESSION RATE	: 0.00000 IN/SEC	
TEMPERATURE BEU F T(1)= 452.735 T(6)= 135.797 T(11)= 100.020	T(2)= 423.512 T(7)= 119.560 T(12)= 100.002	T(8)= 110.078	T(4)= 211.620 T(9)= 104.253	T(51= 163.752 T(10)= 100.026

Table 6.2 (Continued)

TIME = 300.00000 TIME STEP =	0.19823 NO. OF STEPS = 124	ORIGINAL PAGE IS OF POOR QUALITY
integrated heat BTU/SO.FT	HEAT RATES BTU/SQ.FT-SEC	
CONVECTED 312.4 RADIATED 105.4 NET LOAD 207.0 STORED 207.0	CONVECTED 3.2 RADIATED 1.9 NET LOAD 1.4	
SUBLINED 0.0 ADVECTED 0.0 TPS NET 207.0	Stored 1.4 Subliked 0.0 Advected 0.0 TPS Net 1.4	
SURFACE RECESSION DISTANCE 0.00000 IN. TEMPERATURE DEG F	RECESSION RATE 0.00000 IN/SEC	
7(1)=1012.758 T(2)= 976.538 7(6)= 333.322 T(7)= 246.278 7(11)= 100.301 T(12)= 100.029	T(3)= 782.617	T(5)= 451.330 T(10)= 100.391
TIME # 400.00000 TIME STEP #	0.46954 NO. OF STEPS = 179	
integrated heat BTU/SG.FT	Heat rates BTU/80.FT-SEC	
CONVECTED 669.1 RADIATED 385.9 NET LOAD 303.2	CONVECTED 4.0 RADIATED 3.5 NET LOAD 0.6	
STORED 303.2 Sublined 0.0 Advected 0.0	Net Load 0.6 Stored 0.6 Sublined 0.0 Advected 0.0	
TPS NET 303.2 SURFACE RECESSION	TPS NET 0.6	
DISTANCE 0.00000 IN. TEMPERATURE DES F T(1)=1255.578 T(2)=1237.569	RECESSION RATE 0.00000 IN/SEC T(3)=1103.591 T(4)= 959.801	T(5)= 812.666
T(6)= 666.667 T(7)= 324.981 T(11)= 102.816 T(12)= 100.352	T(B)= 366.589 T(4)= 247.565	T(10)= 103.293

Table 6.2 (Continued)

TIME = 500.00000 TIME STEP =	0.29517 NO. OF STEP	3 = 249	öriginal page ig
INTEGRATED HEAT	Wat bitte		OF POOR QUALITY
BTU/S0.FT	HEAT RATES Stu/Sg.ft-sec		
	BIO/DUFT TOCK		
CONVECTED 1094.5	CONVECTED	4.1	
RADIATED 752.5	RADIATED	3.6	
NET LOAD 342.0	NET LOAD	0.3	
SYCRED 342.0	STORED	0.3	
SUBLINED 0.0	Sublined	0.0	
ADVECTED 0.0	ADVECTED	0.0	
TPS NET 342.0	tps net	0.3	
SURFACE RECESSION			
DISTANCE 0.00000 in.	Archending ages	A ABOUT DELINOR	
TEMPERATURE DEG F	RECESSION RATE	0.00000 in/sec	
T(1)=1288.586 T(2)=1277.074	T(3)=1171.510	Ť(4)≠1056.57 5	7/ El. (iño des
T(6)= 793.873 T(7)= 646.440	T(8)= 487.771	T(9)= 312.073	T(51= 929.9 87 T(10)= 109.496
T(11)= 108.731 T(12)= 101.737	** ** ***	11 77- G1E1VIG	11 101- 101-110
TIME # 600.00000 TIME STEP # INTEGRATED HEAT BTU/SQ.FT	0.54968 NO. OF STEP HEAT RATES BTU/SQ.FT-SEC	B = 322	
CONNECTED 1497.7 RADIATED 1199.4	CONNECTED	4.0	
	RADIATED	3.8	
NET LOAD 348.3 Stored 348.3	net load	0.2	
SUBLINED 0.0	stored Sublined	0.2	
ADVECTED 0.0	ADVECTED	0.0	
TPS NET 368.3	TPS NET	0.0	
550.	IFO NEI	0.2	
SURFACE RECESSION DISTANCE 0.00000 IN. TEMPERATURE DEG F	RECESSION RATE	0.00000 IN/SEC	
T(1)=1287.774 T(2)=1277.896	T(3)=1179.176	T(4)=1071.059	T(5)= 950.515
T(6)= 818.517 T(7)= 672.034	T(8)= 511.087	1(9)= 329.583	T(10)= 116.426
T(11)= 115.591 T(12)= 104.472			** *** *******************************

Table 6.2 (Continued)

TIME: # 700	.00000 1	THE STEP -	0.99474	NO. OF STEPS		396	ORIGINAL PAGE IS OF POOR QUALITY
integrated he btu/sg.ft	AT			HEAT RATES BTU/SG.FT-SEC			
CONVECTED	1999.9			CONVECTED	5.7		
RADIATED	1532.6			RADIATED	4.9		•
NET LOAD		427.3		NET LOAD		0.8	
STORED	427.3			STORED	0.8		
SUBLIMED	0.0			SUBLINED	0.0		
advected TPS Net	0.0			ADVECTED	0.0	6	
IFO NEI		427.3		TPS NET		6.8	
SURFACE RECES	BION						
	.00000 IN.			RECESSION RATE	Ö, Ö	XXXX IN/SEC	
TEMPERATURE DI					••••		
T(11=1407.4		2)=1384.297		3)=1256.196	T	4)=1123.893	T(5)= 985.418
T(6)= 841.1		7)= 667.121	Ti	8)= 521.981	11	9)= 338.205	T(10)= 123.225
T(111= 122.3	90 T(12)= 108.277					
TIME = 600	.00000 T	ine step = '	0.84961	no. Of steps	•	481	·
			*******	140, 81, 910,0	_	401	
INTEGRATED HE	\ †			HEAT RATES			
BTV/SQ.FT				BTV/SQ.FT-SEC			
CONVECTED	2752.0			CONVECTED	44 4		
RADIATED	2188.2			RADIATED	11.7 9.6		
NET LOAD		563.8		NET LOAD	7.0	2.1	
STORED	563.8			STURED	2.1	#+#	
SUBLINED	0.0			SUBLINED	0.0		
ADVECTED	0.0			ADVECTED	0.0		
TPS NET		\$63.8		TPS NET		2.1	
SURFACE RECES	STON .			•			
	0.00000 IN.			RECESSION RATE	n /v	DOOD IN/SEC	
TEMPERATURE D	ED F			MARMATHA WILE	V.U	NAMA TUN DEP	
T(1)=1750.2		2)=1700.599	Tź	3)=1535.362	†í	41=1366.276	T(5)=1191.607
T(6)=1009.4	13 16	7)= 818.077		81= 614.490		91= 392.530	7(10)= 130.807
T(11)= 129.7		12)= 112.903	•	~ ~ ~ · · · · · · · · · · · · · · · · ·	• • •	rr- arasudu	(/ 141- 124.8V)
** *** ****	ar ((127= 112.903					

Table 6.2 (Continued)

l.	

TIME = 900.00000 TIME STEP =	0.45125 NO. OF STEPS =	ORIGINAL PAGE IS OF POOR QUALITY
Integrated heat BTV/88.FT	HEAT RATES BTU/90.FT-SEC	OF FOOR QUALITY
CONVECTED 4264.8 RADIATED 3543.0 NET LOAD 721.8 STORED 721.8 SUBLIMED 0.0 ADVECTED 0.0 TPS NET 721.8	GONVECTED 16.5 RADIATED 15.5 NET LOAD STORED 0.9 SUBLIMED 0.0 ADVECTED 0.0 TPS NET	0.9
SURFACE RECESSION DISTANCE 0.00000 IN. TEMPERATURE DES F	recession rate 0.00	DOGO IN/SEC
T(1)=2031.192 T(2)=2003. T(6)=1347.765 T(7)=1123. T(11)= 141.156 T(12)= 118.	B10 T(8)= 858.972 T(4)=1711.928 T(5)=1541.245 9)= 543.878 T(101= 142.943
TIME = 1000.00000 TIME STEP = INTEGRATED HEAT BTU/SO.FT	0.92612 NO. OF STEPS = MEAT RATES 9TU/80.FT-SEC	741
CONVECTED 5911.3 RADIATED 5118.6 NET LOAD 792.7 STURED 792.7 SUBLINED 0.0 ADVECTED 0.0 TPS NET 792.7	CONVECTED 16.4 RADIATED 19.7 NET LOAD STORED 0.7 SUBLIHED 0.0 ADVECTED 0.0 TPS NET	0.7 0.7
SURFACE RECESSION DISTANCE 0.00000 IN. TEMPERATURE DED F T(1)=2036.951	.915 T(3)=1667.971 T(00000 IN/SEC (4)=1748.456
†(11)= 198.092		

Table 6.2 (Continued)

A STATE OF THE STA				
integrated heat btu/80.ft	·	Heat rates Stu/80.ft-sec		OBJORDAN FRANCISCO
CONVECTED	7370.4	CONVECTED	44.4	ORIGINAL Madd for of poor quality.
RADIATED	6561.9	RADIATED	11.6 12.0	of Foot Savers
NET LOAD	909.5	NÉT LOAD	-0.4	
STORED	908.5	STORED	-0.4	
Bublined	0.0	SUBLINED	0.0	
ADVECTED	0. 6	ADVECTED	0.0	
TPS NET.	80 6. 5	TPS NET	-0.4	
SURFACE RECESSION	W			
	odoo in.	RECEBSION RATE	0.00000 IN/SEC	
TEMPERATURE DEG		wassattal	. A14440A 114.9E/	
T(1)=1874.705	T(2)=1872.07	T(3)=1771.484	T(4)=1653.845	T(\$)+1515.935
T(6)=1352.080	T(7)=1153.59	T(B)= 908,004	1(9)= 595.531	1(10)= 177.758
T(11)= 179.627	T(12)= 137.47	, , , , , , , , , , , , , , , , , , , ,	11 77- 9741991	1/ 10/2 1//./38
TIME = 1200,00	1000 time step =	0.07275 NO. OF STE	P8 = 1010	
INTEGRATED HEAT		HEAT RATES		
atu/sq.ft		BTV/SQ.FT-SEC		
COMECTED	8295.0	CONVECTED	4.6	
RADIATED	7521.9	RADIATED	6.8 7.4	
NET LOAD	773.1	NET LOAD		
STORED	773.1	STORED	-0.6 -0.6	
SUBLINED	0.0	SUBLIMED	0.0	
ADVECTED	0.0	ADVECTED	0.0	
the net	773.1	TPS NET	-0.6	
dikere deriman	u.			
SURFACE RECESSION DISTANCE 0.0	n Öööö in.	namikania a kanee na a ma		
TEMPERATURE DEB		recession rate	0.00000 IN/SEC	
T(1)=1606.336	T(2)=1610.530	t(3)=1529.443	te distant est	mi di in i wan
T(6)=1168.583	T(7)= 997.009		t(4)=1429.194	T(\$)=!\$11.000
T(11)= 189,900	T(12)= 149.606	11 97- 797.097	T(9)= 527.224	T(!0)= 191.614
TIME # 1300.00	000 time step =	0.00439 NO. OF STE	MA	
	ANN THE DIST =	0.00439 NO. OF STE	PS * 1112	
INTEGRATED HEAT		HEAT RATES		
ATU/SQ.FT		BTV/SQ.FT-SEC		
CONVECTED	878\$.6	CONVECTED	3.3	
RABIATED	8071.3	RADIATED	3.3 3.9	
NET LUAD	714.3	NET LOAD	-0.6	
STURED	714.3	STURED	-0.6	
SUBLINED	0.0	SUBLINED	0.0	
ADVECTED	0.0	ADVĒČTĒD	0.0	
TPS NET	714.3	TPS NET	-0.6	

Tablé 6.2 (Continued)

SURFACE RECESSION DISTANCE 0.0000 TEMPERATURE DEG F	Ö IN.	RECEBSION RATE	0.00000 IN/SEC	original page is of poor quality
T(1)=1300.551 T(2)=1308.961 T(6)= 964.443 T(7)= 824.781 T(11)= 199.625 T(12)= 161.701	T(3)=1249.432 T(8)= 655.586	T(4)=1173.469 T(9)= 452.626	T(5)=1079.632 T(10)= 200.894 •	
TIME = 1400.00000	tive step =	0.10059 ND. OF STEPS	= 1174	
Integrated Heat Byu/Sg.Ft		heat rates btv/sq.ft-sec		
CONVECTED 8	98å.å	CONVECTED	0.9	
	343.6	RADIATED	1.7	•
net load Stored	642.8 642.8	NET LOAD	-0.8	
SUBLINED	0.0	stored Sublined	-0.8 0.0	
ADVECTED	0.0	ADVECTED	0.0	
TPS NET	642.9	tps net	-0.8	

RECESSION RATE

T(3)= 961.280

T(8)= 532.607

0.00000 IN/SEC

T(4)= 913.690

T(9)= 383.915

INITIAL MASS # 32.26707 (LBM/SQ.FT.)

0.00000 IN.

SURFACE RECESSION

TEMPERATURE DED F T(1)= 974,126

tt 61= 763.097

T(11)= 205.611 +

DISTANCE

H

T(5)= 847.822

T(101= 206.506 #

MAXIMUM TEMPERATURE OF AL.7075-T6 EXCEEDED AT NODE 10 MAXIMUM TEMPERATURE OF AL.7075-T6 EXCEEDED AT NODE 11 MAXIMUM TEMPERATURE OF AL.7075-T6 EXCEEDED AT NODE 11 MAXIMUM TEMPERATURE OF AL.7075-T6 EXCEEDED AT NODE 11

T(2)= 990.248

T(7)= 658.051

T(12)= 172.647

table 6.2 (Concluded)

Section 7.0

... NCLUSIONS AND RECOMMENDATIONS

The EXITS code is an interactive one dimensional thermal analysis tool which has the capability to model a large variety of acrospace thermostructures with a minimum amount of effort on the part of the analyst. The code is used in conjunction with the LANMIN code which produces the environments and is linked to the EXITS code using an output file. The ability to store data describing the structure and the ability to access any number of environment files, allows the user to make parametric studies using various trajectories and TPS atructure types, trading thermal performance and weight.

The present program's capabilities allow the analyst to investigate many of the current and envisioned TPS structures. However, limitations do exist as every candidate structure type could not be anticipated. In view of this, an effort was made to allow changes, modifications, and additions to be made with a minimum of reprogramming effort. Additional capability can be added to give the user a more versatile tool by incorporating the following recommendations:

- 1. Add the capability to include additional types of boundary conditions on the backwall. Presently an adiabatic boundary is assumed. Known temperature and known heat flux should be added.
- 2. Logic should be added to automatically change a slab structure type to a thin type if the computed time step is too small. Presently, the user just make this change.
- 3. Add logic that would allow heat flux on the surface to be computed given the temperature history of a thermocouple placed within the structure.
- 4. Include a TPS sixing routine to automatically optimize the structure given temperature, weight and cost constraints.
- 5. Add additional routines for computing equivalent thermal conductance, capacitance, and weight for additional structure types e. g. hot section stringer-panel etc.
- 6. Add logic which will allow all ablation material to be removed. Presently the surface node must remain in the ablation material.

(1)

Consequently, a small amount of ablator material must remain on the substructure.

Additional studies are recommended to lend confidence to the accuracy of the effective thermal conductance calculations of the various structure types. Comparison with experimental or test data would be quite useful in determining the dependence of the conductance as a function of temperature level, temperature difference, joint or contact conductance and material proporties.

ORIGINAL PAGE IS OF POOR QUALITY.

Section 8.0

REFERENCES

- 1. Schneider, P. J. Conduction Bost Transfer, Addison, Wesley Publishing Company, Inc., Reading, Massachusetts, 1955.
- 2. Landau, H. G. ''Hoat Conduction in a Molting Solid'', Quart. Appl. Math., Vol. 8, No. 1, Jan. 1950, pp 81-94.
- 3. Love T. J. Radiative Rest Transfer, Merrill Publishing Co., Columbus, Ohio, 1968.

APPENDIX (EXITS Listing)

```
ORIGINAL PAGE IS
OF POOR QUALITY
```

PROGRAM MAIN

INTEGER

I IN=5 I IN2=5 CPW=.24 FLG(NMB5)

EXITS CODE EXPLICIT INTERACTIVE THERMAL STRUCTULES CODE

REMTECH INC. 1983

BY J. POND C. SCHMITZ PH. 205-536-8581

PARAMETER (NMB1=20, NMB2=6, NMB3=3, NMB4=6, NMB5=40, NMB6=10, NMB10=100) - MAX NUMBER BODY POINTS - MAX NUMBER LAYERS/BODY POINT NMB2 NMB3 - MAX NUMBER MATERIALS/LAYER NMB4 - MAX NUMBER DIMENSIONS/LAYER - MAX NUMBER CONDUCTORS/NODES NMB5 NMB6 - MAX NUMBER MATERIALS USED NMB7 - LARGEST MATERIAL NUMBER - MAX NUMBER MATERIAL PROPERTY TABLES STORED NMB8 ((4*NMB6)+1.)

NMB9 - SIZE OF MONOVARIATE MATERIAL PROPERTY TABLES ARRAY ((MAX TABLE ENTRIES) #2+1)

NMB10 - MAX NUMBER TIMES FOR MINIVER ENVIRONMENT TABLE

NMB11 - SIZE OF BIVARIATE MATERIAL PROPERTY TABLE ARRAY (2ND DIM) (MAX NUMBER OF TEMPERATURES)

NMB12 - SIZE OF BIVARIATE MATERIAL PROPERTY TABLE ARRAY (3RD DIM) ((MAX NUMBER OF PRESSURES)+1)

COMMON/ENVIR/TM1 (NMB10), HC1 (NMB10), HAW1 (NMB10), PRES1 (NMB10) COMMON/GAP/T1,T2,TH1,TH2,TH3,TH,P,H,M1,M2,M3,TOL,BET,SIG,XM, \$ CAPI,CAP2,XK COMMON/INIT/TSTART, TSTOP, TIMPT, DTIM, NBP, NEXT, METRIC, \$ METRIK, METRIX, NSTP, IPFLAG, TINI (NMB1), SINKT (NMB1), XFIJ (NMB1), \$ MBP(NMB1), 11N, 11N2 COMMON/TAX/ TK(NMB2),XX(NMB5) COMMON/TIME/NNDS, CONV, CRAD, STAB, ISBFG, NCDS COMMON/ARA/T (NMB5), TO (NMB5), C(NMB5), CD (NMB5), ICD (NMB5), L(NMB5,2) COMMON/LD/LS(NMB1, NMB2), XP(NMB1, NMB2, NMB4), MATS(NMB1, NMB2, NMB3), \$ NS(NMB1) COMMON /NODES/NN, I, TT, TINIT, TSINK, FIJ, TMPMAX (NMB6) COMMON/CTMP/TAW, DTSM COMMON/CAC/NEXFG, NIT, XMAS COMMON/PICT/NNIS(NMB1,NMB2) COMMON/SUBLM/TSUB, XL, XLP, EXCHT, NAB, ISTAR, NDIV, IAB, EXCHSV, QADV, \$ QADVS, TMSV, IDROP COMMON/TITLE/CHARZ, CHARI, FNAMI, FNAMS COMMON/PRESS/PRES COMMON/SAVE/XEND1, XEND2, XTST1, XTST2, XLTS, XMIN DIMENSION TIT (NMB5), ZXX (NMB5), FLGG (NMB5, NMB3, 2) CHARACTER*13 CHAR1 (NMB6) CHARACTER#20 FNAM1, FNAM3 CHARACTER*10 CHAR2(NMB6)

```
P
```

```
9[G=.1714E-8/3600.0
TT=1000.0
C DETERMINE INITIAL CONDITIONS AND STRUCTURE FOR ALL BODY POINTS
      CALL INPGEO
      WRITE(9,720)TSTART, TSTOP, TIMPT
      WRITE (9,722) DTIM, STAB, TOL, BET
      WRITE (9,723) NBP, NEXT, NSTP. IPFLAG
      DO 8000 1=1,NBP
      IAB=0
      NDIV=4
      ISTAR=0
                                                          ORIGINAL PAGE IS
      TINIT=TINI(I)
                                                          OF POOR QUALITY
      TSINK=SINKT(I)
      F1J=XF1J(1)
C FIND PROPERTIES OF MATERIALS
      CALL DATA1
 FIND MINIVER ENVIRONMENT FOR BODY POINT
      CALL DATA2(MBP(1))
      NN=NS(1)
      XX(1)=0.0
      XMAS=0.0
  DETERMINE NODAL NETWORK
      CALL NODE
      MP= I
  DRAW PICTURE (INCLUDING NODES) FOR OUTPUT FILE
      CALL PICTUR(9,1)
      ISBFG=0
      DO 436 IK=1,NN
      IF(LS(1, IK).EQ.6)|SBFG=1
436 CONTINUE
      TIMETSTART
     DT=0.0
      NCTRL=0
      NIT=0
      NPR=0
     NPFG=1
      ISV=1
     DTSM=0.0
     NEXFG=0
     DO 140 K=1, NNDS
     C(K)=0.0
     FLG(K)=(1H)
140 CONTINUE
     DO 141 K=1, NCDS
     CD(K)=0.0
141 CONTINUE
     WRITE (9,749)
     QCONV=0.0
     ORAD=0.0
     QNET=0.0
     OSTOR=0.0
     QSUB=0.0
     EXCHSV=0.0
     EXCHT=0.0
     QTOT=0.0
```

```
(+)
```

```
OADV=0.0
       DADVS=0.0
       TMSV=0.0
       QCOR=0.0
                                             ORIGINAL PAGE 19'
       ORAR=0.0
                                             OF FOOR QUALITY
       QNER=0.0
       OSTR=0.0
       QSUR=0.0
       QTOR=0.0
       RECR=0.0
       QADR=0.0
       QAD=0.0
        START TIME LOOP
 1000 CONTINUE
       IF (NPFG.NE.1) GO TO 501
       XXSV=XX(1)
       TMPSV=TIM
       WRITE(9,750)TIM, DTSM, NIT
       WRITE(9,600)
      FORMAT (/,1X, INTEGRATED HEAT ,34X, HEAT RATES !)
       IF (METRIK.EQ.O) WRITE (9,601)
       IF (METRIK. EQ. 1) WRITE (9,602)
      FORMAT(1X, 'BTU/SQ.FT', 40X, 'BTU/SQ.FT-SEC',/)
 602 FORMAT(1X, JOULES/SQ.M', 38X, WATTS/SQ.M',/)
      IF (METRIK. EQ. 0) WRITE (9, 603) QCONV, QCOR, QRAD, QRAR, QNET, QNER,
     $ QSTOR, QSTR, QSUB, QSUR, QAD, QADR, QTOT, QTOR
      Z1=000NV*11355.9
      Z2=000R*11355.9
      Z3=QRAD#11355.9
      Z4=ORAR*11355.9
      Z5=QNET+11355.9
      Z6=QNER#11355.9
      Z7=QSTOR*11355.9
      Z8=QSTR#11355.9
      Z9=QSUB#11355.9
      Z10=05UR*11355.9
      Z11=QAD*11355.g
      Z12=QADR#11355.9
      Z13=QTOT#11355.9
      Z14=QTOR*11355.9
      IF (METRIK. EQ. 1) WRITE (9,603) 21, 22, 23, 24, 25, 26, 27, 28, 29,
     $ 210,211,212,213,214
603 FORMAT (1x, 'CONVECTED', T16, F10.1, T51, 'CONVECTED', T61, F10.1, /, RADIATED', T16, F10.1, T51, 'RADIATED', T61, F10.1, /,
        NET LOAD', T26, F10.1, T51, INET LOAD', T71, F10.1,/,
        STORED', T16, F10.1, T51, STORED', T61, F10.1,/,
        SUBLIMED! , T16, F10.1, T51, SUBLIMED! , T61, F10.1,/,
     $ ' ADVECTED', T16, F10.1, T51, 'ADVECTED', T61, F10.1,/,
    $ ' TPS NET', T26, F10.1, T51, TPS NET', T71, F10.1,/)
     ZZ1=XX(1)#12.
     ZZ2=RECR*12.
     IF (METRIK. EQ. 0) WRITE (9,604) ZZ1, ZZ2
604 FORMAT(1X, SURFACE RECESSION', /, DISTANCE 1, F11.5,
```

```
$ ' IN.', T51, 'RECESSION RATE ', F11.5, ' IN/SEC')
      ZZ1=XX(1)*12.0*2.54
      ZZ2=RECR#12.0*2.54
      if (METRIK. EQ. 1) write (9,605) ZZ1, ZZ2
 605 FORMAT(1X, SURFACE RECESSION', /, DISTANCE ', F11.5,
     $ ' CM.', T51, 'RECESSION RATE ', F11.5, ' CM/SEC')
      DO 2000 INC3=1,NCD$
      N1=L(INC3,1)
      N2=L(INC3,2)
      IF (METRIK. EQ. 0) TTT (N1)=T(N1)-459.6
      IF (METR (K. EO. 0) TTT (N2) =T (N2) -459.6
      IF (METRIK.EQ.1)TTT(N1)=T(N1)/1.8
      IF (METRIK. EQ. 1) TTT (N2) = T(N2) / 1.8
      IF(LS(1,1CD(1NC3)).EQ.7)GO TO 2000
      IF (MATS(I, ICD(INC3), 1).EQ.0)GO TO 11
C FLAGS FOR MAXIMIM TEMPERATURE OF MATERIALS
      IF(T(N1).GT.TMPMAX(MATS(1, ICD(INC3),1)))FLGG(N1,1,1)=1
      IF(T(N1).GT.TMPMAX(MATS(1, ICD(INC3),1)))FLG(N1)=1H*
 11
      IF (MATS(1,1CD(1NC3),3).EQ.0)GO TO 12
      IF(T(N1).GT.TMPMAX(MATS(1, ICD(INC3),3)))FLGG(N1,3,1)=1
      if(T(N1).GT.TMPMAX(MATS(I,ICD(INC3),3)))fLG(N1)=1H*
      IF(MATS(1,1CD(1NC3),2).EQ.0)GO TO 13
      IF(T(N2).GT.TMPMAX(MATS(1,1CD(1NC3),2)))FLGG(N2,2,1)=1
      IF(T(N2).GT.TMPMAX(MATS(1,1CD(1NC3),2)))FLG(N2)=1H*
 13
      IP(MATS(1,1CD(1NC3),3).EQ.0)GO TO 14
      IF(T(N2).GT.TMPMAX(MATS(1, ICD(INC3),3)))FLGG(N2,3,2)=1
      1f(T(N2).GT.TMPMAX(MATS(1,1CD(1NC3),3)))FLG(N2)=1H*
      CONTINUE
 2000 CONTINUE
       IF (METRIK. EQ. 0) WRITE (9,714)
       IF (METRIK.EQ.1) WRITE (9.715)
 714 FORMAT(1X, TEMPERATURE DEG FT)
 715 FORMAT(1X, TEMPERATURE DEG K')
      WRITE(9,711)(JJ,TTT(JJ),FLG(JJ),JJ=1,NNDS)
       IF(LS(1,1).NE.7)GO TO 499
      DO 2020 IR1=1, NNDS
       IF (METRIK. EQ. 0) ZXX(IR1) = XX(IR1) *12.0
       IF (METRIK. EQ. 1) ZXX(IR1)=XX(IR1)*12.0*2.54
 2020 CONTINUE
       IF (METRIK.EQ.O) WRITE (9,716)
       IF (METRIK.EQ.1) WRITE (9,717)
 716 FORMAT(1X, NODE POSITION INCHES!)
      FORMAT(1X, 1 NODE POSITION CM1)
       WRITE(9,726)(JJ, ZXX(JJ), JJ=1, NNDS)
 499 CONTINUE
       IF(IPFLAG.EQ.1)GO TO 500
      DO 2021 IR1=1, NCDS
       IF (METRIK.EQ.O) ZXX(IR1) = CD(IR1)
       IF(METRIK.EQ.1)ZXX(IR1)=CD(IR1)*1899.0
 2021 CONTINUE
       IF (METRIK. EQ. 0) WRITE (9,718)
       IF (METRIK. EQ. 1) WRITE (9,719)
 718 FORMAT(1X, CONDUCTORS BTU/SEC-DEG F')
 719 FORMAT (1X. CONDUCTORS WATTS/DEG K!)
       WRITE(9,713)(JJ,ZXX(JJ),JJ=1,NCDS)
```

```
DO 2022 IR1=1, NNDS
      IF (METRIK.EQ.O) ZXX(IR1)=C(IR1)
                                                         ORIGINAL PAGE IS
      IF (METRIK.EQ.1)ZXX(IR1)=C(IR1)*1899.0
                                                        OF POOR QUALITY
 2022 CONTINUE
      IF (METRIK.EQ.O) WRITE (9,727)
      IF (METRIK. EQ. 1) WRITE (9,728)
 727
      FORMAT(1X, CAPACITORS BTU/DEG F1)
 728 FORMAT(1X, 'CAPACITORS JOULES/DEG K')
      WRITE(9,712)(JJ,ZXX(JJ),JJ=1,NNDS)
      CONTINUE
      NPR=NPR+1
      NPFG=0
      CONTINUE
      MAT=MATS(1,1,1)
      CALL HEATN(TIM, HC, HAW, PRES, ISV)
      CALL PROP(TO(1), PRES, MAT, RO, CP, XK, EP)
      CRAD=SIG*EP*FIJ*(TO(1)**2+TSINK**2)*(TO(1)+TSINK)
      IF(LS(I,1).NE.7)GO TO 502
  IF ABLATOR SUBLIMER THEN DETERMINE TEMPERATURE OF SUBLIMATION AND
 HEAT OF SUBLIMATION
      CALL SUBPR(PRES, 1, TSUB)
      CALL SUBPR(PRES, 2, XL)
      IF (TIM. LE. O. O)XLP=XL
 502 CONTINUE
      TAW=HAW/CPW
      CONV=CPW *HC
      IF (NEXT*(NIT/NEXT).EQ.NIT)NEXFG=1
      IF (NEXFG.NE.1)GO TO 466
 FIND CAPACITOR AND CONDUCTOR VALUES
      CALL COMPCC
 466 CONTINUE
C DETERMINE TIME STEP
      CALL TMSTEP(DTSM, I)
      TMPT1=TIM-TSTART
      TTEMP=TMPT1+DTSM
      PTIM=FLOAT(NPR)*TIMPT
      IF (TTEMP.LT.PTIM) GO TO 365
      DTSM=PTIM-TMPT1
      NEXFG=1
      NPFG=1
365 CONTINUE
C COMPUTÉ TEMPERATURES
      CALL COMTMP
      JJ=ICO(1)
      JN=LS(I,JJ)
      IF(JN.NE.7)GO TO 366
      TMSV=TIM
C FIND RECESSION DISTANCE
      CALL ABSUB(1)
      IF(IDROP.EQ.0)GO TO 3659
      DO 3658 JIL=1, NMB5
3658 FLG(JIL)=0.0
3659 CONTINUE
      NEXFG=1
 366 CONTINUE
```

A-5

```
INTEGRATE HEAT LOADS
      0.0=0.0
      QAD=QAD+QADV
      QCONV=QCONV+DTSM+(TAW-TO(1))+CONV
      QRAD=QRAD+DTSM*(TO(1)-TSINK)*CRAD
      QCOR=(TAW-TO(1))*CONV
                                                             ORIGINAL PAGE IS
      QRAR=(TO(1)-TSINK)*CRAD
                                                             OF POOR QUALITY
      QNER = QCOR - QRAR
      DO 492 JJ=1, NNDS
      QQ=QQ+(T(JJ)-TO(JJ))*C(JJ)
      (LL)T=(LL)OT
 492 CONTINUE
      QNET=QCONY-QRAD
      QSTOR=QSTOR+00
      QSUB=QSUB+EXCHT-QADV
      QTOT=QSTOR+QSUB+OAD
C
C
   TIME STEP
      TIM=TIM+DTSM
C
                                                    FIND HEAT RATES
      QADR=QADV/DTSM
      QSTR=QO/DTSM
      QSUR=EXCHT/DTSM-QADR
      QTOR=QSTR+QSUR+QADR
      RECR=(XX(1)-XXSV)/(TIM-TMPSV)
      EXCHSV=EXCHT
     NIT=NIT+1
      IF(NIT.GE.NSTP)GO TO 8000
      IF(TIM.LE.TSTOP) GO TO 1000
      IF (METRIK. EQ. 1) XMAS2=XMAS *4.8824
      IF (METRIK. EQ. 0) WRITE (9,752) XMAS
      IF (METRIK. EQ. 1) WRITE (9,753) XMAS2
     WRITE(9,760)
760 FORMAT(111)
     DO 3000 NDS1=1, NCDS
     ND1=L(NDS1,1)
     ND2=L(NDS1,2)
     IF (MATS(1, ICD(NDS1),1).EQ.0)GO TO 770
     IF (FLGG(ND1,1,1).EQ.1) WRITE (9,761) CHAR2 (MATS(1,1CD(NDS1),1)), ND1
770 IF (MATS(1, ICD(NDS1),3).EQ.0)GO TO 771
     IF(FLGG(ND1,3,1).EQ.1)WRITE(9,761)CHAR2(MATS(1,1CD(NDS1),3)),ND1
     IF(MATS(1,1CD(NDS1),2).EQ.0)GO TO 772
     IF(FLGG(ND2,2,1).EQ.1)WRITE(9,761)CHAR2(MATS(1,1CD(NDS1),2)),ND2
772 IF (MATS(1, ICD(NDS1),3).EQ.0)GO TO 773
     IF (FLGG(ND2,3,2).EQ.1) WRITE (9,761) CHAR2 (MATS(1, ICD(NDS1),3)), ND2
761 FORMAT (/, 1X, MAXIMUM TEMPERATURE OF 1, A10, EXCEEDED AT NODE 1,
    $ 13)
773 CONTINUE
3000 CONTINUE
8000 CONTINUE
711 FORMAT((5(3H T(, 13, 2H)=,F8.3,2X,A1,4X,:)))
```

```
ORIGINAL PACE, IN
726 FORMAT((5(4H XX(,13, 2H)=,F8.3,6X,:)))
                                                                           OF POOR QUALITY
712 FORMAT((5(3H C(, 13, 2H)=, E10.3,:, 5X)))
713 FORMAT((5(4H CD(,13, 2H)=, E10.3,:, 4X)))
749 FORMAT(1H1)
750 FORMAT (///, 1H .7HTIME = ,F12.5,5X,12HTIME STEP = ,F12.5,5X,
              15HNO. OF STEPS = ,110)
752 FORMAT (///, INITIAL MASS = 1, F11.5,3X, (LBM/SQ.FT.) 1,///)
      FORMAT (///, ! INITIAL MASS = 1, F11.5,3X, 1 (KGM/SQ.M.) 1,///)
753
720 FORMAT (1H1,5x, 'TSTART = ',F12.3,5x, 'TSTOP = ',F12.3,5x, 'TIMPT = ',F12.3)
722 FORMAT(1H,5X,'DTIM = ',F12.3,5X,'STAB = ',F12.3,5X,
$ 'TOL = ',F12.3,5X,'BET = ',F12.3)
723 FORMAT(1H,5X,'NBP = ',3X,15,9X,'NEXT = ',3X,15,9X,
$ 'NSTP = ',18,9X,'IPFLAG = ',18,/)
       WRITE(11N2,724)
724 FORMAT(//,15x,'- - EXECUTION COMPLETE - - -1)
       WRITE(IIN2,725)FNAM1
725 FORMAT(/,1X, OUTPUT FILENAME = 1, A20,/)
       CLOSE (UNIT#7, STATUS# *KEEP*)
       CLOSE (UNIT=9, STATUS= *KEEP*)
       CALL EXIT
       END
```

ORIGINAL TYKER S

```
SUBROUTINE ABSUB(11)
   SUBROUTINE TO COMPUTE RECESSION RATE OF ABLATOR AND ALSO
   THE HEAT REQUIRED TO CAUSE THE MELT LINE TO RECEDE.
      PARAMETER (NMB1=20, NMB2=6, NMB3=3, NMB4=6, NMB5=40, NMB6=10)
      COMMON/INIT/TSTART, TSTOP, TIMPT, DTIM, NBP, NEXT, METRIC,
     $ METRIK, METRIX, NSTP, IPFLAG, TINI (NMB1), SINKT (NMB1), XFIJ (NMB1),
     $ MBP(NMB1), IIN, IIN2
      COMMON/SUBLM/TSUB, XL, XLP, EXCHT, NAB, ISTAR, NDIV, IAB, EXCHSV, QADV,
     $ QADVS, TMSV, IDROP
      COMMON/TIME/NNDS, CONV, CRAD, STAB, ISBFG, NCDS
      COMMON/ARA/T(NMB5), TO(NMB5), C(NMB5), CD(NMB5), ICD(NMB5), L(NMB5,2)
      COMMON/LD/LS(NMB1, NMB2), XP(NMB1, NMB2, NMB4), MATS(NMB1, NMB2, NMB3),
     $ NS(NMB1)
      COMMON/TAX/TK(NMB2),XX(NMB5)
      COMMON/NODES/NN, I, TT, TINIT, TSINK, FIJ, TMPMAX (NMB6)
      COMMON/PICT/NNIS(NMB1, NMB2)
      COMMON/PRESS/PRES
      COMMON/SAVE/XEND1, XEND2, XTST1, XTST2, XLTS, XMIN
      COMMON/TITLE/CHARZ, CHART, FNAMT, FNAME
      CHARACTER#10 CHAR2(NMB6)
      CHARACTER#13 CHAR1 (NMB6)
      CHARACTER*20 FNAM1, FNAM3
      DIMENSION ZXX(NMB5)
      IF(NAB.EQ.0) GO TO 1000
      JJ=1CD(11)
      11P1=11+1
      JJP1=1CD(11P1)
     DIV=FLOAT(NDIV)
     JN=LS(1, JJ)
     N1=L(||,1)
     N2=L(11.2)
     N3=L(11P1,2)
     MA=MATS(1,JJ,1)
  COMPUTE RECESSION DISTANCE
     QADV S=QADV
     CALL PROP(TT, PRES, MA, RO, CP, XK, EP)
     DS=EXCHT/(XLP*RO)
     EXCHSV=EXCHT
     IDROP=0
     IF(ISTAR.NE.O)GO TO 555
     ISTAR=1
  COMPUTE NODE BOUNDARIES
     XEND1=(XX(N2)+XX(N1))/2.0
     XEND2=(XX(N3)+XX(N2))/2.0
     XMIN=XEND1/DIV
555 CONTINUE
MOVE NODE LOCATIONS
     XX(N1)=XX(N1)+DS
     XX(N2)=XX(N2)+DS/3.0
     XP(1,JJ,1)=XP(1,JJ,1)-DS
     XTST1=XEND1-XX(N1)
     XTST2=2.0*DS/3.0
     XLTS=XX(N2)-XX(N1)
     IF(XLTS.GT.XMIN)GO TO 560
     XTST2=XEND2-XEND1
```

```
ORIGINAL PACE IN
      IDROP-1
                                                         OF POOR QUALITY
560 CONTINUE
      XEND1=XEND1+XTST2
  COMPUTE EFFECTIVE HEAT OF ABLATION
      QMEL=RO*(XLP*XTST1+XL*XTST2+CP*XTST2*(TSUB-TO(N2)))
      XLP=OMEL/(RO*(XTST1+XTST2))
  COMPUTE ADVECTED HEAT
      QADV=RO*CP*XTSTZ*(TSUB-TO(N2))
      IF (IDROP. EQ. 1) GO TO 520
      GO TO 1000
 520 CONTINUE
C RENUMBER NODES IF NODE DROPPED
      NNDS=NNDS-1
      NCDS=NCDS-1
      DO 521 KK=1, NNDS
      IF (KK.EQ.1) GO TO 521
      KKP1=KK+1
      XX(KK)=XX(KKP1)
      C(KK)=C(KKP1)
      TÖ(KK)=TÖ(KKP1)
      7(KK)=T(KKP1)
  521 CONTINUE
      XEND2=(XX(N3)+XX(N2))/2.0
      DO 522 KK=1,NCDS
      IF(KK.EQ.1) GO TO 522
      KKP1=KK+1
      CD(KK)=CD(KKP1)
      ICD(KK)=ICD(KKP1)
  522 CONTINUE
      WRITE(9,700)
      1-(LL,I) sinn=(LL,I)-1
  PRINT PICTURE OF NEW CONFIGURATION
      CALL PICTUR(9,1)
      IF(NCDS.EQ.1)GO TO 2000
      IF(JJ.NE.JJP1)GO TO 2000
 1000 CONTINUE
  700 FORMAT(1H ,//, NODE DROPPED FROM SUBLIMER-ABLATOR MODEL!,//>
      GO TO 3000
 2000 CONTINUE
 WRITE(11N2,2003) FNAM1
2003 FORMAT(//,1X, 'RUN STOPPED DUE TO INSUFFICIENT ABLATIVE MATERIAL',
     $ ! LEFT: ,//,1X, !OUTPUT FILE = !, A20)
      STOP
 3000 CONTINUE
      RETURN
```

END

```
SUBROUTINE COMPCC
   SUBROUTINE TO COMPUTE VALUES OF THERMAL CAPACITORS AND CONDUCTORS
       PARAMETER (NMB1=20, NMB2=6, NMB3=3, NMB4=6, NMB5=40, NMB6=10)
       COMMON/CAC/NEXFG, NIT, XMAS
       COMMON/GAP/T1, T2, TH1, TH2, TH3, TH, P, H, M1, M2, M3, TOL, BET, SIG, XM, CAP1, CAP2, XK
       COMMON/TAX/ TK (NMB2), XX (NMB5)
       COMMON/TIME/NNDS, CONV, CRAD, STAB, ISBFG, NCDS
       COMMON/ARA/T(NMB5), TO(NMB5), C(NMB5), CD(NMB5), ICD(NMB5), L(NMB5,2)
       COMMON/LD/LS(NMB1, NMB2), XP(NMB1, NMB2, NMB4), MATS(NMB1, NMB2, NMB3),
             NS(NMB1)
      COMMON /NODES/NN, I, TT, TINIT, TSINK, FIJ, TMPMAX (NMB6)
       COMMON/PRESS/PRES
       NEXFG=0
      DO 176 K=1 NNDS
      C(K)=0.0
 176 CONTINUE
      DO 177 K=1, NCDS
      CD(K)=0.0
 177 CONTINUE
      DO 226 | |=1 NCDS
      JJ=1CD(11)
       JM-LS(1, 11)
      N1=L(||,1)
      N2=L(11,2)
      MA=MATS(1, JJ, 1)
      IF(JN.E0.6) GO TO 227
      IF(JN.EQ.1) GO TO 225
      IF(JN.EQ.7) GO TO 225
      GO TO 227
  225 CONTINUE
C COMPUTE CAPACITANCE AND CONDUCTANCE OF SLAB AND ABLATOR NODES
      TT=(TO(N1)+TO(N2))/2.0
      CALL PROP(TT, PRES, MA, RO, CP, XK, EP)
      DI=XX(N2)-XX(N1)
      CTM=D1 *R0*CP/2.0
      CMAS=DI #RO
      IF(NIT.NE.O)CMAS=0.0
      XMAS=XMAS+CMAS
      C(N1)=C(N1)+CTM
      C(N2)=C(N2)+CTM
      CD(!!)=XK/D!
      GO TO 225
 227 CONTINUE
 LOAD GEOMETRY AND MATERIAL NUMBERS INTO COMMON - GAP
      CALL LOAD(1, JJ, N1, N2)
      ITST=JN-1
  COMPUTE EQUIVALENT CONDUCTIVITY AND CAPACITANCE OF ALL
  OTHER STRUCTURES
      GO TO (1,2,3,4,5), ITST
1
      CONTINUE
      CALL RGAP
      GO TO 7
2
      CONTINUE
      CALL HONEY
```

1

GO TO 7

CONTINUE
CALL CORG
GO TO 7

CONTINUE
CALL STAND
GO TO 7

CONTINUE
CALL THINS

CALL THINS

CONTINUE
C(N1)=C(N1)+CAP1
C(N2)=C(N2)+CAP2
IF(NIT.NE.O)XM=0.0

C SUM MASS OF STRUCTURE
XMAS=XMAS+XM
CD(II)=XK

226 CONTINUE
RETURN
END

ORIGINAL PALE. !
OF POOR QUALITY

```
SUBROUTINE COMTMP
  THIS SUBROUTINE COMPUTES THE TEMPERATURES
       PARAMETER (NMB1=20, NMB2=6, NMB3=3, NMB4=6, NMB5=40, NMB6=10)
      COMMON/LD/LS(NMS1, NMS2), XP(NMS1, NMS2, NMS4), MATS(NMS1, NMS2, NMS3),
      $ NS(NMB1)
      COMMON /NODES/NN, I, TT, TINIT, TSINK, FIJ, TMPMAX (NMB6) COMMON/CTMP/TAW, DTSM
      COMMON/TIME/NNDS, CONV, CRAD, STAB, ISBFG, NCDS
      COMMON/ARA/T (NMB5), TO (NMB5), CO(NMB5), ICD (NMB5), L(NMB5,2)
      COMMON/SUBLM/TSUB, XL, XLP, EXCHT, NAB, ISTAR, NDIV, IAB, EXCHSV, QADV,
      $ QADVS, TMSV, IDROP
      NAB=0
      DO 456 JJ=1, NNDS
  CHECK TO SEE IF THIN SKIN SECTIONS EXIST ANYWHERE IN STRUCTURE
       IF(ISBFG.EQ.0)GO TO 615
   THIN SKIN LAYER
      JM2=JJ-2
      JP2=JJ+2
      I+LL=19L
      1-LL=1ML
      IF(JJ.EQ.NNDS)GO TO 599
      IF(CD(JJ).GT.1.0E9)GO TO 601
      IF(JJ.EQ.1)GO TO 615
 599
      CONTINUE
      IF(CD(JM1).GT.1.0E9)GO TO 610
      GO TO 615
 601
      CONTINUE
  NODE ABOVE THIN SECTION
      CC=C(JJ)\(C(JP1)+C(JJ))
      IF(JJ.EQ.1)GO TO 502
      IT=NNDS-1
      A1=TO(JM1) +CD(JM1)
      A3=TO(JJ) *CD(JM1)
      IF(JJ.EQ.IT)GO TO 603
      A2=T0(JP2) *CD(JP1)
      A4=TO(JJ)*CD(JP1)
      GO TO 461
 603
      CONTINUE
      A2=0.0
      A4=0.0
      GO TO 461
 602 CONTINUE
C THIN SKIN ON SURFACE, NODE ABOVE THIN SECTION
      A1=TAW *CONV+TSINK *CRAD
      A3=TO(JJ) *CONV+TO(JJ) *CRAD
      IF(NNDS.EQ.2)GO TO 604
      A4=TO(JJ)*CD(JP1)
      A2=TO(JP2) *CD(JP1)
      GO TO 461
      CONTINUE
604
      A4=0.0
      A2=0.0
      GO TO 461
 610 CONTINUE
```

```
D
```

```
NODE BELOW THIN SECTION
                                                   ORIGINAL PAGE 18
     CD=C(JJ)/(C(JM1)+C(JJ))
                                                   OF POOR QUALITY
      IF(JJ.EQ.2)GD TO 612
     A1-TO(JM2) #CD(JM2)
     A3=TO(JJ)*CD(JM2)
     IF(JJ.EQ.NNDS)GO TO 613
A2=TO(JP1)*CD(JJ)
      A4#TO(JJ)#CD(JJ)
      GO TO 461
613 CONTINUE
      A2=0.0
      A4=0.0
      GO TO 461
612 CONTINUE
C THIN SKIN ON SURFACE, NODE BELOW THIN SECTION
      A1 = TAW #CONV+TS INK #CRAD
      A3=TO(JJ) *CONV+TO(JJ) *CRAD
      IF(NNDS.EQ.2)GO TO 614
      A2=TO(JP1) *CD(JJ)
      A4=TO(JJ)*CD(JJ)
      GO TO 461
 614 CONTINUE
      A4=0.0
      A2=0.0
 461 CONTINUÉ
      F1=(A1+A2)*CC
      F2=(A3+A4)*CC
      GO TO 460
 615 CONTINUE
C STANDARD HEAT BALANCE
      IF(JJ.NE.1)GO TO 457
  SURFACE NODE
      F1=TSINK*CRAD+TAW*CONV+TO(2)*CD(1)
      F2=TO(1)*(CRAD+CONV+CD(1))
      GO TO 460
 457 CONTINUE
      IF(JJ.NE.NNDS)GO TO 458
C LAST NODE
      JM1=JJ-1
      F1=TO(JM1)*CD(JM1)
      F2=TO(NNDS)*CD(JM1)
      GO TO 460
 458 CONTINUE
C GENERAL NODE
      1-LL-1ML
      JP1=JJ+1
      F1=TO(JM1) *CD(JM1)+TO(JP1) *CD(JJ)
      F2=T0(JJ)*(CD(JM1)+CD(JJ))
 460 CONTINUE
C COMPUTÉ TEMPERATURES
      T(JJ)=TO(JJ)+(F1-F2)*(DTSM/C(JJ))
  CHECK TO SEE IF SUBLIMER TEMPERATURE HAS BEEN EXCEEDED
       IF(JJ.NE.1) GO TO 456
       IF(LS(1,1).NE.7) GO TO 456
```

EXCHT=0.0
IF(T(JJ).LE.TSUB) GO TO 456
NAB=1
EXCHT=(T(JJ)-TSUB)*C(JJ)
T(JJ)=TSUB
456 CONTINUE
RETURN
END

ORIGINAL PAGE IST OF POOR QUALITY

ORIGINAL MAGE 19" OF POOR QUALITY

```
SUBROUTINE CORG
   SUBROUTINE COMPUTES EFFECTIVE THERMAL CONDUCTIVITY, CAPACITY,
   AND MASS OF A CORRUGATED STRUCTURE
       COMMON/GAP/T1, T2, TH1, TH2, TH3, TH, P, H, M1, M2, M3, TOL, BET, SIG,
      $ XM, CAP1, CAP2, XK
       COMMON/FACT/XX(10,2),YY(10,2)
       COMMON/SF/AR(10), EPP(10), F(10,10), ASF(10,10)
       COMMON/PRESS/PRES
       T30=(T1+T2)/2.0
       T3=T30
       CONK=1.0E8
       AKC=CONK #2.0 #TH3
       P2=P/2.0
       TT1=T1
       TT2=T2
       TT3=(T1+T2)/2.0
       B1=P2/2.0
       B2=TH/2.0
       B3=$QRT(B1 **2+B2 **2)
       A1=P2
       A3=2.0相3
       VOL=TH1+TH2+(2.0*B3)*TH3/P2
  START ITERATION FOR MIDPOINT TEMPERATURES
      DO 100 1=1,100
      CALL PROP(TT1, PRES, M1, RHO1, CP1, XK1, EPP(1))
      CALL PROP(TT2, PRES, M2, NHO2, CP2, XK2, EPP(2))
      CALL PROP(TT3, PRES, M3, RHO3, CP3, XK3, EPP(3))
IF(I.NE.1)GO TO 101
  SET COORDINATES FOR ENDS OF EACH OF THREE SURFACES FOR
C RADIATION ENCLOSURE
      DO 102 11=1.3
      EPP(2)=1.0
      DO 103 JJ=1,2
      XT=0.0
      YT=TH
      IF(11.EQ.2.AND.JJ.EQ.1)YT=0.0
      IF(11.EQ.3.AND.JJ.EQ.1)YT=0.0
      IF(11.EQ.1.AND.JJ.EQ.2)XT=P2
      IF(11.EQ.3.AND.JJ.EQ.2)XT=P2
      TX=(LL, | | ) XX
      TY=(LL_11)YY
      CONTINUE
 102 CONTINUE
C FIND GEOMETRIC VIEW FACTORS AND RADIANT INTERCHANGE FACTORS
      CALL VFAC(3)
      CALL SRIPF(3)
      A2F23=ASF(1,3)
      A1F13=ASF(1,3)
 101 CONTINUE
      AK1=XK1*TH1/B1
      AK2=XK2*TH2/B1
      AK3=XK3*TH3/B3
 COMPUTE EQUIVALENT CONDUCTOR
      C1=AK1*AKC*AK3/(AK1*AKC+AK1*AK3+AKC*AK3)
      C2=AK2+AKC+AK3/(AK2#AKC+AK2+AK3+AKC+AK3)
```


C COMPUTE RADIATION CONDUCTOR C4=A1F13#SIG#(T1##2+T3##2)#(T1+T3) C5=A2F23+SIG+(T2++2+T3++2)+(T2+T3) C ITERATE ON 13 T3N=(T1+C1+T2+C2+T1+04+T2+C5)/(C1+C2+C4+C5) T3=BET+T3N+(1.0-BET)+T3 TEST=ABS(T3-T30)/T3 IF (TEST. LT. TOL) GO TO 200 T13=13 130=13 100 CONTINUE GO TO 300 200 CONTINUE T12=ABS(T1-T2) T13=ABS(T1-T3) C COMPUTE TOTAL HEAT TRANSFER Q=T13#(C1+C4)/P2 XK=Q/T12 COMPUTE EQUIVALENT CONDUCTIVITY XM=TH1 *RH01+TH2*RH02+(2.0*B3)*TH3*RH03/P2 C COMPUTE CAPACITORS CAP1=(VOL/2.0) *RH01 *CP1 CAP2=(VOL/2.0) *RH02*CP2 300 CONTINUE RETURN END

ORIGINAL PAGE IS OF POOR QUALITY

```
SUBROUTINE DATA1
  SUBROUTINE TO READ AND STORE THERMOPHYSICAL PROPERTY DATA
      PARAMETER (NMB1=20, NMB2=6, NMB3=3, NMB4=6)
      Parameter (NMB8=41, NMB9=41, NMB6=10, NMB11=20, NMB12=8)
      COMMON/DTA/CC(NMB8, NMB9), BSV(NMB8, NMB11, NMB12)
      COMMON/CSUB/CCS(2,NMB9)
      COMMON/LD/LS(NMB1, NMB2), XP(NMB1, NMB2, NMB4), MATS(NMB1, NMB2, NMB3),
             NS(NMB1)
      COMMON/TITLE/CHAR2, CHAR1, FNAM1, FNAM3
      COMMON /NODES/NN, I, TT, TINIT, TSINK, FIJ, TMPMAX (NMB6)
      COMMON/INIT/TSTART, TSTOP, TIMPT, DTIM, NBP, NEXT, METRIC,
     $ METRIK, METRIX, NSTP, IPFLAG, TINI (NMB1), SINKT (NMB1), XFIJ (NMB1),
     $ MBP(NMB1), | IN, | IN2
      CHARACTER*10 CHAR2(NMB6), TEST1
      CHARACTER*13 CHAR1 (NMB6), TEST2
      CHARACTER #20 FNAM1, FNAM3
      DIMENSION MIST(NMB6), BB(6), ARD(8), ARDS(8)
      OPEN (UNIT=8, NAME= 'INPI .DAT', TYPE= OLD', RECORDS IZE=132)
      WRITE(9,703)
      DO 471 JJ=1,NMB6
      MTŠT(JJ)≃O
 471 CONTINUE
      IC=Ö
      NLA=NS(1)
   LOOP 1 TO NUMBER OF LAYERS
      DO 400 LT=1.NLA
 LOOP 1 TO NUMBER OF MATERIALS PER LAYER (MAX)
      DO 500 IM-1, NMB3
      MA=MATS(I,LT,IM)
      IF (MA.EQ.0)GO TO 500
 100 CONTINUE
      READ(8,701)KD
      FORMAT(13,2X,15,4X,A10,1X,A13,E10.0)
 707 FORMAT(5X, 15, 4X, A10, 1X, A13)
      IF(KD.LT.0)GO TO 300
C CHECK TO SEE IF MATERIAL NUMBER MATCHES
      IF (KD.NE.MA) GO TO 100
      BACKSPACE (UNIT=8)
      READ(8,701)KD, JD, TEST1, TEST2, TMPMXA
      DO 351 K5=1,NMB6
      KSV=K5
C CHECK TO SEE IF MATERIAL HAS BEEN USED
      IF(MA.EQ.MTST(K5))GO TO 352
      CONTINUE
      10=10+1
      MTST(IC)=MA
 RENUMBER MATERIAL INDENTIFIERS
      MATS(I,LT, IM)=IC
      TMPMAX(IC)=TMPMXA
      GO TO 353
352 CONTINUÉ
      MATS(I, LT, IM)=KSV
      REWIND (UNIT=8)
      GO TO 500
353 CONTINUE
```

```
ORIGINAL PACK IN
  STORE TITLES
                                                        OF POOR QUALITY
      CHAR2(IC)=TEST1
      CHAR1(IC)=TEST2
      DO 250 IB=1,4
      IF(IB.EQ.1)GO TO 251
C READ TABLE TITLE FOR TABLE 2,3, AND 4
      READ(8,707) JO, TEST1, TEST2
     CONTINUE
  STORE NUMBER OF ENTRIES
      IT=(IC-1)*4+18
      CC(IT, 1)=FLOAT(JD)
      DO 200 ITT=1.JD
      READ(8,702) (ARD(MR), MR=1,8)
      IF(ARD(1).LT.0)GO TO 600
      IF(ITT.GT.1)GO TO 210
  STORE MAXIMUM TEMPERATURE FOR PRINTING IN DESIRED UNITS
      IF (METRIK. EQ. 0) TEMMAX=TMPMAX(1C)-459.6
      IF (METRIK.EQ.1) TEMMAX=TMPMAX(IC)/1.8
      IF(IB.EQ.1.AND.METRIK.EQ.0)WRITE(9,800)TEST1,KD,TEMMAX,TEST2
 800 FORMAT(//,8x, A10, - MAT NO. 1,12,//, MAXIMUM TEMPERATURE1,11x,
     $ F7.2, DEG F1,//,5X, TEMP.1,9X, A13,/,4X, (DEG F)1,6X,
     $ '(LBM/CU.FT)',/)
      IF (IB.EQ.1.AND. METRIK.EQ.1) WRITE (9,801) TEST1, KD, TEMMAX, TEST2
 801 FORMAT(//,8x, A10, - MAT NO. 1,12,//, MAXIMUM TEMPERATURE, 11x,
     $ F7.2, DEG K',//,5x,'TEMP.',9x,A13,/,4x,'(DEG K)',6x,
     $ '(KGM/CU.M.)',/)
      IF(IB.EQ.2.AND.METRIK.EQ.0)WRITE(9,802)TEST2
 802 FORMAT(//,5x, TEMP. 1,7x, A13,/,4x, TOEG F) 1,5x, TOEG F) 1,/)
      IF(IB.EQ.2.AND.METRIK.EQ.1)WRITE(9,803)TEST2
 803 FORMAT(//,5X, 'TEMP.',7X, A13,/,4X, '(DEG K)',4X,
     $ (JOULES/KGM-DEG K)!,/)
      IF(IB.EQ.3.AND.METRIK.EQ.0)WRITE(9,804)TEST2
 804 FORMAT(//,5X,'TEMP.',7X,A13,/,4X,'(DEG F)',4X,
     $ '(BTU/FT-S-DEG F)',/)
      IF(IB.EQ.3.AND.METRIK.EQ.1)WRITE(9,805)TEST2
 805 FORMAT (//,5X, TEMP. 1,7X, A13,/,4X, (DEG K) 1,4X, (WATTS/M-DEG K) 1,/)
      IF(IB.EQ.4.AND.METRIK.EQ.0)WRITE(9,806)TEST2
     FORMAT(//,5X,'TEMP.',8X,A13,/,4X,'(DEG F)',4X,'(DIMENSIONLESS)',/)
      IF(IB.EQ.4.AND.METRIK.EQ.1)WRITE(9,807)TEST2
      FORMAT(//,5X, TEMP. 1,8X,A13,/,4X, TOEG K) 1,4X, TOENSIONLESS) 1,/)
 210 CONTINUE
      A=ARD(1)
      B=ARD(2)
      IF (METRIK. ÉQ. 0) AAA=A-459.6
      IF (METRIK.EQ.1)AAA=A/1.8
      IF (METRIK. EQ. 1. AND. IB. EQ. 1) BBB=B*16.018067
      IF (METRIK, EQ. 1. AND. IB. EQ. 2) BBB=B*4187.6
      IF (METRIK. EQ. 1. AND. IB. EQ. 3)BBB=B*6228.343
      WRITE (9,705) AAA, BBB
 705 FORMAT(1X,E12.4,3X,E12.4)
      K1=1TT*2
      K2=K1+1
C STORE INDEPENDENT AND DEPENDENT ARRAYS
```

CC(IT,K1)=A

```
ORIGINAL PAGE IN
        CC(IT, K2)=B
                                                          OF POOR QUALITY
   200
        CONTINUE
        GO TO 250
  500 CONTINUE
 C BIVARIAT TABLE
        IARDS=IFIX(-ARD(1))
        IF (METRIK. EQ. 1) GO TO 505
        WRITE(9,808) (ARD(MR), MR=2, IARDS+1)
  808 FORMAT (//, 35x, CONDUCT (VITY', /, 33x, (BTU/FT-S-DEG F)',
                         PRESSURE (LB/SQ.FT) , /, 4X, (DEG F) ,
       $ //,5X,1TEMP.
       $ 7(4X,F7.2,2X))
       GO TO 610
  605 CONTINUE
       DO 605 MR1=2, IARDS+1
  606 ARDS (MR1) = ARD (MR1) *47.88
  WRITE (9,809) (ARDS (MR), MR=2, IARDS+1)
809 FORMAT (//, 35X, CONDUCT IVITY', /, 33X, (WATTS/M-DEG K)',
      $ //,5x, 'TEMP. PRESSURE (N/SQ.M)',/,4x, '(DEG K) ',
      $ 7(3X,F9.2,1X))
  610 CONTINUE
       WRITE(9,810)
 810 FORMAT(13X, 11)
C STORE NUMBER OF PRESSURES
       CC(IT, 2)=ARD(1)
       NARD=-ARD(1)+2
  STORE PRESSURES
       DO 601 IKS=3, NARD
       IM1=1K5-1
       CC(IT, IKS)=ARD(IM1)
 601 CONTINUE
       NSTR=NARD+1
       NSS=NARD-2
  READ REST OF BIVARIAT TABLE
       DO 602 16=1,JD
      READ(8,702) (ARD(MR), MR=1, IARDS+1)
      DO 620 MKR=1, IARDS+1
      IF (METRIK. EQ. 0) ARDS(1) = ARD(1)-459.6
      IF (METRIK. EQ. 1) ARDS (1) = ARD (1)/1.8
      ARDS (MKR) = ARD (MKR)
      IF (METRIK. EQ. 1) ARDS (MKR) = ARD (MKR) *6231.1
      CONTINUE
      WRITE(9,811) (ARDS(MKR), MKR=1, IARDS+1)
 811 FORMAT(8(2X, £11.4))
C SAVE TEMPÉRATURES
      CC(IT, NSTR)=ARD(1)
      NSTR=NSTR+1
      DO 603 17=1,NSS
      171=17+1
  SAVE DEPENDENT VARIABLE
      BSV(IT, 16, 17)=ARD(171)
603 CONTINUE
602 CONTINUE
250
     CONTINUE
     READ(8,701,END=1000)KDS, JD, TEST1, TEST2, TMPMXA
      IF(KDS.NE.KD)GO TO 1000
```

```
STORE TWO ABLATOR PROPERTIES
     DO 1100 IM2=1,2
     CCS(IM2,1)=FLOAT(JD)
     IF (IM2.EQ.1.AND.METRIK.EQ.0)WRITE (9,830)TEST2
830 FORMAT(//,4X, 'PRESSURE',5X, A13, /,3X, '(LB/SQ.FT)',6X,
    $ '(DEG F)',/)
     IF (IM2.EQ.1.AND.METRIK.EQ.1) WRITE (9,831) TEST2
831 FORMAT(//,4x, 'PRESSURE',5x, A13,/,4x, '(N/SQ.M)',7x,
    $ '(DEG K)',/)
     IF (IM2.EQ.2. AND. METRIK, EQ. D) WRITE (9,832) TEST2
832 FORMAT(//,4X,'PRESSURE',5X,A13,/,3X,'(LB/SQ.FT)',5X,
    $ '(BTU/LBM)',/)
     IF (IM2.EQ.2.AND.METR (K.EQ.1) WRITE (9,833) TEST2
833 FORMAT(//,4X, 'PRESSURE', 5x, A13, /,4X, '(N/SQ.M)',5X,
    $ '(JOULES/KGM)',/)
     DO 1101 ITT=1,JD
     READ(8,702)A.B
     IF (METRIK.EQ.O) AA1=A
     IF (METRIK. EQ. 1) AA1 = A*47.88
     IF (IM2.EQ.1.AND.METRIK.EQ.0)BB1=B-459.6
     IF(IM2.EQ.1.AND.METRIK.EQ.1)BB1=B/1.8
     IF (IM2.EQ.2.AND.METRIK.EQ.0)BB1=B
     1F(1M2.EQ.2.AND.METRIK.EQ.1)BB1=B*2326.4
     WRITE(9,705) AA1, BB1
     K1=1TT*2
     K2=K1+1
     CC$([M2,K1)=A
     CCS(1M2,K2)=B
1101 CONTINUE
     READ(8,701)KD, JD, TEST1, TEST2, TMPMXA
1100 CONTINUE
1000 CONTINUE
     REWIND (UNIT=8)
     GO TO 500
300 CONTINUE
     WRITE(9,708)MA
708 FORMAT(1H , MATERIAL NUMBER', 3x, 15,3x, CANNOT BE FOUND. 1)
     REWIND (UNIT=8)
     GO TO 500
     CONTINUE
500
     CONTINUE
     REWIND (UNIT=8)
702 FORMAT (5X, 8E10.0)
703 FORMAT(1H1,10X,11HT A B L E S)
     CLOSE (UNIT=8, STATUS= *KEEP*)
     RETURN
```

END

```
SUBROUTINE DATA2(LBP)
  SUBROUTINE TO READ AND STORE ENVIRONMENT FROM LANMIN FILE (UNIT 7)
       PARAMETER (NMB10=100, NMB1=20)
      COMMON/INIT/TSTART, TSTOP, TIMPT, DTIM, NBP, NEXT, METRIC, S METRIK, METRIX, NSTP, IPFLAG, TINI(NMB1), SINKT(NMB1), XFIJ(NMB1),
      $ MBP(NMB1), [IN, [IN2
       COMMON/ENVIR/TM1 (NMB10), HC1 (NMB10), HAW1 (NMB10), PRES1 (NMB10)
       CHARACTER*72 DESCRP
      WRITE (9,666)
 666
      FORMAT (1H1)
      CONTINUE
       1 C=0
      READ(7,700, END=1000) DESCRP, IBP
 700 FORMAT (A72, 15)
C CHECK FOR CORRECT BODY POINT NUMBER
       IF (IBP.EQ.LBP)GO TO 900
      CONTINUE
      READ(7,701)D1,D2,D3,D4
 701 FORMAT(2X, F6.1, 39X, E10.3, 2X, E10.3, 36X, E10.3)
      IF(D1.LT.0.0)GO TO 100
      GO TO 50
 900 CONTINUE
      IF (METRIC. EQ. 0) WRITE (9,750) IBP, DESCRP
750 FORMAT (1H , BODY POINT NUMBER = 1,15,5x, A72,//,10x, TIME',9x,
     S'FILM COEF. 1,5x, 'REC ENTHALPY',6x, 'PRESSURE',/,10x, '(SEC)',
     $6X, '(LBM/SQ.FT-SEC)',4X, '(BTU/LBM)',6X, '(LBF/SQ.FT)',/)
      IF (METRIC. EQ. 1) WRITE (9,850) IBP, DESCRP
850 FORMAT(1H , BODY POINT NUMBER - 1, 15,5x, A72, //, 10x, TIME , 9x,
     S'FILM COEF. 1,5X, 'REC ENTHALPY', 6X, 'PRESSURE', /, 10X, '(SEC)',
     $7X, 1 (KGM/SQM-SEC) 1,4X, 1 (JOULES/KGM) 1,5X, 1 (N/SQ.M) 1,/)
901 CONTINUE
      (C=1C+1
 READ LANMIN DATA
     READ(7,701)TM1(IC),HC1(IC),HAW1(IC),PREST(IC)
      IF (TM1 (IC).GE.0.0) WRITE (9,751) TM1 (IC), HC1(IC),
     $HAW1(IC), PRES1(IC)
      IF (METRIC.EQ.0)GO TO 500
      HC1(1C)=HC1(1C)/4.8824
     HAW1(IC)=HAW1(IC)/2.32456E3
     PRESI (IC)=PRESI (IC)/47.88
500 CONTINUE
     FORMAT(1H ,4(6x,E10.4))
      IF (TM1 (IC).GE.0.0)GO TO 901
     REWIND (UNIT=7)
     GO TO 1001
1000 CONTINUE
     WRITE (9,752) LBP
752 FORMAT(1H , CANNOT FIND BODY POINT 1,15)
1001 CONTINUE
     RETURN
     END
```

```
SUBROUTINE DIST(11, J1, 12, J2, D)

SUBROUTINE TO COMPUTE DISTANCE BETWEEN TWO POINTS GIVEN

COORDINATES XX(1, J), YY(1, J)

I = SURFACE NO
J = 1 OR 2; END POINTS

COMMON/FACT/XX(10,2), YY(10,2)

X1=XX(11, J1)

Y1=YY(11, J1)

X2=XX(12, J2)

Y2=YY(12, J2)

D=SQRT((X1-X2)**2+(Y1-Y2)**2)

RETURN
END

ORIGINAL FORTER

OF POOR QUALITY
```

```
SUBROUTINE HEATN(TIME, HC, HAW, PRES, ISV)
THIS ROUTINE DETERMINES FILM COEFFICIENT, ADIABATIC WALL ENTHALPY,
AND PRESSURE AS A FUNCTION OF TIME
      PARAMETER (NMB10=100)
      COMMON/ENVIR/TM1 (NMB10), HC1 (NMB10), HAW1 (NMB10), PRES1 (NMB10)
      11=1SV
100 CONTINUE
      12=11+1
      IF (TM1 (12) .GT. TIME) GO TO 50
      11=11+1
      GO TO 100
50
      CONTINUE
      154=11
      DT=TM1(12)-TM1(11)
      DINC=(TIME-TM1(11))/DT
      HC=HC1(11)+(HC1(12)-HC1(11))*DINC
      HAW=HAW1(11)+(HAW1(12)-HAW1(11))+DINC
      PRES=PRES1(11)+(PRES1(12)-PRES1(11))+DINC
      RETURN
      END
```

```
SUBROUTINE HONEY
   SUBROUTINE TO COMPUTE EQUIVALENT THERMAL CONDUCTIVITY, CAPACITY,
   AND MASS OF HEXAGONAL HONEYCOMB STRUCTURE
      COMMON/GAP/T1, T2, TH1, TH2, TH3, TH, P, H, M1, M2, M3, TOL, BET, SIG.
     $ XM, CAP1, CAP2, XK
      COMMON/PRESS/PRES
      f12=.1
      F13=.9
C SET GEOMETRIC PARAMETERS
      D=H*3.0/(2.0*SORT(3.0))
      CPFT2=2.0*SQRT(3.0)/(H**2*3.0)
      WPFT2=CPFT2*3.0
                                                          ORIGINAL PAGE IS
      DWAL=D*2.0/3.0
                                                          OF POOR QUALITY
      VOL=(TH1+TH2)+WPFT2*(TH*TH3*DWAL)
      A1 = (D/3.0 + H/2.0)/2.0
      A2=A1
      A3 = DW AL *TH
      T3=(T1+T2)/2.0
      CON=1.0E8
      CONK=CON*DWAL *TH3
      T30=T3
      DO 100 I=1,100
      CALL PROP(T1, PRES, M1, RHO1, CP1, XK1, EP1)
      CALL PROP(T2, PRES, M2, RHO2, CP2, XK2, EP2)
      CALL PROP(T3, PRES, M3, RHO3, CP3, XK3, EP3)
  COMPUTE RADIANT INTERCHANGE FACTORS
      F1=(1.0/A1)*(1.0/EP1-1.0)
      F2=(1.0/A3)*(1.0/EP3-1.0)
      F3=1.0/(A1*F13)
      A1F13=1.0/(F1+F2+F3)
      F2=(1.0/A2)*(1.0/EP2-1.0)
      F3=1.0/(A1*F12)
      A1F12=1.0/(F1+F2+F3)
C SET CONDUCTORS
      C1=4.0*TH1*5.0*DWAL*XK1/H
      C2=C1*XK2/XK1
      C3=2.0*XK3*TH3*DWAL/TH
      XC1=C1*CONK*C3/(C1*CONK+C1*C3+CONK*C3)
      XC2=C2*CONK*C3/(C2*CONK+C2*C3+CONK*C3)
      R1=2.0*A1F13*S!G*(T1**2+T3**2)*(T1+T3)
      R2=2.0*A1F13*SIG*(T2**2+T3**2)*(T1+T3)
      R3=2.0*A1F12*SIG*(T1**2+T2**2)*(T1+T2)
  ITERATE ON CELL WALL TEMPERATURE - T3
      T3N=(T1*(XC1+R1)+T2*(XC2+R2))/(XC1+R1+XC2+R2)
      13=(1.0-BET)*T3+BET*T3N
      TEST=ABS(T3-T30)/T3
      IF(TEST.LT.TOL)GO TO 200
      T30=T3
      TT3=T3
 100 CONTINUE
      GO TO 300
 200 CONTINUE
      T12=ABS(T1-T2)
      T13=ABS(T1-T3)
C COMPUTE TOTAL HEAT TRANSFER
```

ORIGINAL PAGE IS OF POOR QUALITY

Q#(T12*R3+T13*(R2+XC2))*WPFT2
C COMPUTE CONDUCTIVITY, MASS, AND CAPACITANCE
XK #Q/T12
XM#TH1*RHO1+TH2*RHO2+RHO3*WPFT2*TH*TH3*DWAL
CAP1=(VOL/2.0)*RHO1*CP1
CAP2=(VOL/2.0)*RHO2*CP2
300 CONTINUE
RÉTURN
END

```
SUBROUTINE INFGEO
   SUBROUTINE FOR INTERACTIVE INPUT OF DATA FOR EXITS CODE
     INCLUDES INTERACTIVE INPUT OF STRUCTURES
      PARAMETER (NMB1=20, NMB2=6, NMB3=3, NMB4=6, NMB6=10, NMB7=100)
      COMMON/GAP/T1,T2,7H1,TH2,TH3,TH,P,H,M1,M2,M3,TOL.BET.SIG.XM.
            CAP1, CAP2, XK
      COMMON/INIT/TSTART, TSTOP, TIMPT, DTIM, NOP, NEXT, METRIC,
     $ METRIK, METRIX, NSTP, IPFLAG, TINI (NMB1), SINKT (NMB1), XFIJ (NMB1),
     $ MBP(NMB1), IIN, IIN2
      COMMON/TIME/NNDS, CONV, CRAD, STAB, ISBFG, NCDS
      COMMON/LD/LS(NMB1,NMB2),XP(NMB1,NMB2,NMB4),MATS(NMB1,NMB2,NMB3),
            NS(NMB1)
      COMMON/PICT/NNIS(NMB1,NMB2)
      COMMON/TITL2/ CHAR3
      COMMON/TITLE/CHAR2, CHAR1, FNAM1, FNAM3
      CHARACTER*20 CHAR(7), FNAM1, FNAM2, FNAM3
      CHARACTER*10 CHAR3(NMB7), CHAR2(NMB6)
      CHARACTER*13 CHAR1 (NMB6)
      INTEGER ANS1, ANS2, ANS4, ANS5, ANS6, ANS7, ANS8, ANS9, ANS10, STRFLG
      DATA CHÁR/
                   *SLAB
                   'RADIATION GAP
                   HONEY COMB
                   *CORRUGATED
                   'Z STANDOFF
                   THIN SKIN
                   'ABLATOR SUBLIMER
      WRITE(11N2,10)
      FORMAT (1H , WHAT IS THE MINIVER INPUT DATA FILE NAME ? !)
 10
      READ(IIN, 20, END=1234) FNAM2
 20
      FORMAT (A20)
      OPEN(UNIT=7, NAME=FNAM2, TYPE= OLD , ERR=9, RECORDS IZE=80)
 22
      WRITE(11N2,23)
 23
      FORMAT(1H , WHAT IS THE STRUCTURE FILE NAME ?!)
      READ(11N, 20, END=1234) FNAM3
      WRITE(11N2,30)
 30
      FORMAT (1H , WHAT IS THE NAME OF THE OUTPUT FILE ?')
      READ(11N, 20, END=1234) FNAM1
      OPEN(UNIT=9, NAME=FNAM1, TYPE=!NEW!, ERR=22, RECORDSIZE=132)
Ċ
C
                                 DEFAULT VALUES FOR CONTROL PARAMETERS
      DT IM=10.0
      STAB=2.0
      TOL=.001
      BET=0.5
      NEXT=20
      NSTP=3000
      IPFLAG=1
      METRIC=0
      METRIK=0
      METRIX=0
C SET INITIAL, FINAL, AND DELTA PRINT TIMES
 40
      WRITE(11N2,50)
 50
      FORMAT (1H , WHAT IS THE INITIAL TIME (SEC) ?1)
```

```
READ(IIN, %, ERR#40, END#1234) TSTART
  60
       WRITE (11N2,70)
       FORMAT (1H , WHAT IS THE FINAL TIME (SEC) ?!)
  70
                                                                 ORIGINAL PAGE IS
       READ(IIN, 4, ERR=60, END=1234)TSTOP
                                                                 OF POOR QUALITY
       WRITE(11N2,90)
  80
  90
       FORMAT (-1H , WHAT IS THE TIME (SEC) BETWEEN PRINTOUTS ?1)
       READ(IIN, ", ERR-80, END-1234) TIMPT
       WRITE(11N2,110)
  110 FORMAT (1H , DO YOU WANT TO RESET CONTROL PARAMETERS ?!)
       READ (IIN, 120, ERR# 100, END# 1234) ANS1
  120
       FORMAT(A1)
  130 FORMAT (E20.10)
 140 FORMAT(110)
       IF (ANSI.NE.1HY)GO TO 190
                                                RESET CONTROL PARAMETERS
 160 WRITE (11N2, 170) DT IM
 170 FORMAT (1H , 'RESOLUTION: DEFAULT = ',F4.1,' NEW VALUE = 1)
      READ(11N, 130, ERR=160, END=1234) A1
       IF (A1 .GT. .00001)DT IM-A1
 180 WRITE(11N2,190) STAB
 190 FORMAT(1H , STABILITY: DEFAULT = 1, F3.1, NEW VALUE = 1)
      READ(IIN, 130, ERR=180, END=1234) A2
       IF (A2.GT..00001) STAB=A2
 200 WRITE(IIN2,210)TOL
 210 FORMAT(1H , TITERATION TOLERENCE: DEFAULT = 1,F4.3, NEW VALUE = 1)
      READ(IIN, 130, ERR=200, END=1234) A3
      IF (A3.GT..00001) TOL=A3
 220 WRITE (11N2, 230) BET
 230 FORMAT (1H , TRELAXATION FACTOR: DEFAULT = 1, F3.1, NEW VALUE = 1)
      READ(IIN, 130, ERR=220, END=1234) A4
      IF(A4.GT..00001)BET-A4
240 WRITE (11N2, 250) NEXT
250 FORMAT (1H , NUMBER OF STEPS BETWEEN PARAMETER CALC.: DEFAULT = 1,12,
             ! NEW VALUE = !)
      READ(IIN, 140, ERR=240, END=1234)K1
      IF (K1.GT.O) NEXT=K1
260
      WRITE(IIN2,270)NSTP
270 FORMAT (1H , MAXIMUM NUMBER OF ITERATIONS: DEFAULT = 1,14,
            NEW VALUE = 1)
     READ(IIN, 140, ERR=260, END=1234)K2
      IF(K2.GT.O)NSTP=K2
      WRITE(11N2,278)
278 FORMAT(/,
    $ 16X, 'ENGLISH(DEFAULT)', 5X, 'METRIC', //,
    $ 1x, TEMPERATURE ,4x, DEG F1, 16x, DEG K1,/,
    $ 1X,'LENGTH',9X,'INCHES',15X,'CM',/,
$ 1X,'ENERGY',9X,'BTU',18X,'JOULES',/,
$ 1X,'MASS',11X,'LBM',18X,'KGM',//)
275 WRITE(11N2,277)FNAM2
     FORMAT (1H , ARE THE UNITS OF 1, A20, 1 IN ENGLISH OR METRIC ?1)
     READ(11N, 120, ERR=275, END=1234) ANS8
     IF (ANSB.EQ. 1HM)METRIC-1
     WRITE(11N2,282)
282 FORMAT (1H , DO YOU WANT OUTPUT DATA IN ENGLISH OR METRIC ?1)
```

```
ORIGINAL PAGE IS
       READ(IIN, 120, ERR=281, END=1234) ANS8
                                                            OF FOOR QUALITY
       IF (ANSB.EQ. 1HM) METRIK=1
  283
       WRITE(11N2, 284)
       FORMAT (1H , 1DO YOU WANT INPUT DATA IN ENGLISH OR METRIC ?1)
       READ(IIN, 120, ERR=283, END=1234) ANSB
       IF (ANSB.EQ. 1HM)METRIX=1
  280
       WRITE (| IN2, 290)
  290 FORMAT (1H , 'DO YOU WANT ADDITIONAL PRINTOUT ? !)
       READ (11N, 120, ERR=280, END=1234) ANS7
       IF (ANST.EQ. 1HY) IPFLAG=0
C
                                            END OF CONTROL PARAMETER LOOP
·C
  150 CONTINUE
 300 CONTINUE
 310 WRITE(11N2,320)
 320 FORMAT (1H , WHAT IS THE TOTAL NUMBER OF BODY POINTS ?!)
       READ(IIN, *, ERR=310, END=1234) NBP
       IF (NBP. GT. NMB1) WRITE (11N2, 330)
 330 FORMAT (1X, 'ERROR---NUMBER OF BODY PTS. EXCEEDS DIMENSIONING')
       IF (NBP. GT. NMB1) GO TO 300
       DO 1000 IB=1,NBP
C DEFINE STRUCTURE AND INITIAL CONDITIONS FOR THE CURRENT BODY POINT
 340 CONTINUE
       IF(IB.EQ.1)WRITE(IIN2,350)
       IF(IB.NE.1)WRITE(IIN2,360)
 360 FORMAT (1H , WHAT IS THE NEXT BODY PT. NUMBER ?*)
 350 FORMAT (1H , WHAT IS THE BODY POINT NUMBER ? !)
      READ(IIN, *, ERR=340, END=1234) MBP(IB)
       IF(IB.EQ.1)GO TO 370
  IF STRUCTURE SAME AS FOR PREVIOUS B.P. USE SAME DATA
 390 WRITE(IIN2,380)MBP(IB),MBP(IB-1)
 FORMAT(1H , DOES BODY PT. 1,15, HAVE THE SAME DATA1, REQUIREMENTS AS BODY PT. 1,15,1 21)
      READ(IIN, 120, ERR=390, END=1234) ANS5
      IF (ANS5.EQ.1HY)GO TO 890
 370 CONTINUE
  RESET TIME OR CONTROL PARAMETERS ?
       YES(Y)
                   - RESET TIMING PARAMETERS
C
                   = RESET TIMING PARAMETERS
       CONTROL (C) = RESET CONTROL PARAMETERS
 410 WRITE(IIN2,420)
 420 FORMAT (1H , DO YOU WANT TO RESET THE TIME OR CONTROL .
     $'PARAMETERS ?')
      READ(IIN, 120, ERR=410, END=1234) ANS6
      IF (ANS6.EQ.1HY)GO TO 40
      IF (ANS6.EQ.1HT)GO TO 40
      IF (ANS6.EQ.1HC)GO TO 160
C DEFINE INITIAL TEMPERATURE DATA FOR BODY POINT
 430 WRITE(IIN2,400)MBP(IB)
400 FORMAT(1H , WHAT IS THE INITIAL TEMPERATURE OF BODY PT. ..
     $15,1 ?1)
      READ(IIN, *, ERR=430, END=1234) TINI(IB)
      IF (METRIX. EQ. 0) TINI (IB) = TINI (IB) +459.6
      IF (METRIX.EQ. 1)TINI (IB)=TINI (IB) #1.8
440 WRITE(11N2,450)MBP(1B)
```

```
450 FORMAT (1H , WHAT IS THE SINK TEMPERATURE OF BODY FT. ..
     $15,1 ?1)
     READ(IIN, *, ERR=440, END=1234) SINKT(IB)
      IF (METRIX.EQ.O) SINKT (IB) = SINKT (IB) +459.6
      IF (METRIX.EQ. 1) SINKT (IB) = SINKT (IB) *1.8
 460
     WRITE(11N2,470)MBP(18)
     FORMAT (1H , WHAT IS THE VIEW FACTOR FOR BODY PT. 1,19,1 ?1)
      READ(IIN, *, ERR=460, END=1234)XFIJ(IB)
      STRFLG=0
C DEFINE STRUCTURE
 472 WRITE(IIN2,473)MBP(IB)
     FORMAT (1H , DOES THE STRUCTURE FOR BODY PT. 1,15,
     $ ' EXIST IN THE STRUCTURE FILE ?')
      READ(IIN, 120, ERR=472, END=1234) ANS9
C OBTAIN STRUCTURE DATA FROM STRUCTURE FILE
      IF (ANS9.EQ.1HY)CALL STRUCT(1, IB)
      IF(ANS9.EQ.1HY)GO TO 830
 474 WRITE(11N2,475)MBP(1B)
 475 FORMAT (1H , DO YOU WANT TO ADD THE STRUCTURE FOR BODY PT. 1,
     $ 15.' TO THE STRUCTURE FILE ?')
      READ(11N, 120, ERR=474, END=1234) ANS10
      IF (ANSIO.EQ.1HY)STRFLG=1
 480 CONTINUE
C DEFINE NUMBER OF LAYERS
 490 WRITE(IIN2,500)MBP(IB)
 500 FORMAT(1H , THOW MANY LAYERS AT BODY PT. 1,15,1 21)
      READ(IIN, *, ERR=490, END=1234) NS(IB)
      IF(NS(IB).GT.NMB2)WRITE(IIN2,510)
 510 FORMAT(1X, 'ERROR---NUMBER OF LAYERS EXCEEDS ARRAY DIMENSIONING')
      IF(NS(IB).GT.NMB2)GO TO 480
  LOOP 1 - NUMBER OF LAYERS
      DO 2000 KK=1,NS(IB)
C DEFINE STRUCTURE TYPE AND DIMENSIONS FOR EACH LAYER
 520 WRITE(11N2,530)
 530 FORMAT(///,"
                               STRUCTURE TYPE
                                                        NUMBER
                                                                 1.//,
                                  SLAB
                                 RADIATION GAP
                                                             2
                                 HÓNEYCOMB
                                                             3
                                 CORRUGATED
                                                              5
                                  Z STANDOFF
                                  THIN SKIN
                                                             6
                                  ABLATOR SUBLIMER
 540 WRITE(11N2,550)KK,MBP(1B)
 550 FORMAT (1H , WHAT IS THE STRUCTURE TYPE NUMBER 1,
           'FOR LAYER ',12,' OF BODY PT. ',15,' ?')
      READ(IIN, *, ERR=540, END=1234)LS(IB, KK)
      GO TO(560,570,580,590,600,610,620),LS(IB,KK)
 560 WRITE(IIN2,630)KK,MBP(IB)
      READ(IIN, *, ERR=560, END=1234)MATS(IB, KK, 1), XP(IB, KK, 1)
      GO TO 640
 570 CONTINUE
      DO 3000 LLL=1,2
      WRITE(IIN2,660)LLL,KK,MBP(IB)
      READ(11N, *, ERR=650, END=1234) MATS(1B, KK, LLL), XP(1B, KK, LLL)
3000 CONTINUE
```

```
670 WRITE(11N2,680)KK, MBP(18)
 680 FORMAT (1H , WHAT IS THE STRUCTURE HEIGHT FOR LAYER .
          12, OF BODY PT. 1,15,1 ?1)
      READ(!IN, *, ERR=670, END=1234\XP(IB, KK, 4)
      GO TO 640
 580
      CONTINUE
      DO 4000 LLL=1,3
      WRITE(IIN2,660)LLL,KK,MBP(IB)
      READ(IIN, *, ERR=690, END=1234) MATS(IB, KK, LLL), XP(IB, KK, LLL)
4000
      CONTINUE
      WRITE(11N2,710)KK,MBP(1B)
      READ(IIN, *, ERR=700, END=1234)XP(IB, KK, 4), XP(IB, KK, 6)
      GO TO 640
 590
      CONTINUE
      DO 4500 LLL=1,3
      WRITE(IIN2,660)LLL,KK,MBP(IB)
      READ(IIN, *, ERR=720, END=1234) MATS(IB, KK, LLL), XP(IB, KK, LLL)
4500
      CONTINUE
      WRITE(11N2,740)KK,MBP(1B)
      READ(IIN, *, ERR=730, END=1234)XP(IB, KK, 4), XP(IB, KK, 5)
      GO TO 640
600
      CONTINUE
      DO 5000 LLL=1,3
      WRITE(IIN2,660)LLL,KK,MBP(IB)
      READ(IIN, *, ERR=750, END=1234) MATS(IB, KK, LLL), XP(IB, KK, LLL)
5000
      CONTINUE
760 WRITE(11N2,770)KK,MBP(1B)
      READ(11N, *, ERR=760, END=1234)(XP(1B, KK, LLL+3), LLL=1,3)
      GO TO 640
610
      CONTINUE
      WRITE(11N2,630)KK, MBP(1B)
      READ(IIN, *, ERR=780, END=1234) MATS(IB, KK, 1), XP(IB, KK, 4)
      GO TO 640
620
     CONTINUE
      WRITE(11N2,630)KK, MBP(1B)
      READ(IIN, *, ERR=790, END=1234) MATS(IB, KK, 1), XP(IB, KK, 1)
      GO TO 640
     FORMAT(1H , WHAT IS THE MAT. IDENTIFIER AND THE MAT.
     $ ' THICKNESS',/,' FOR LAYER ',12,' OF BODY PT. 1,15,1 (1)
     FORMAT ( WHAT IS THE MAT. IDENTIFIER AND THICKNESS OF MAT. . .
             12,/, FOR LAYER ',12,' OF BODY PT. ',15,' ?')
     FORMAT (1H , WHAT IS THE STRUCTURE HEIGHT AND CELL DIMENSIONS',
 710
            ' OF LAYER 1,12,1 OF BODY PT. 1,15,1 21)
 740 FORMAT (1H , WHAT IS THE STRUCTURE HEIGHT AND PITCH FOR LAYER .
            12, OF BODY Pt. 1,15,1 ?1)
770 FORMAT (1H , WHAT IS THE STRUCTURE HEIGHT, PITCH, AND FLANGE',
            * WIDTH FOR LAYER 1,12, OF BODY PT. 1,15,6 21)
640 CONTINUE
     WRITE(11N2,665)KK, MBP(1B)
800
     FORMAT(1H , 'ARE THERE ANY CORRECTIONS FOR LAYER !.
             12. OF BODY POINT 1,15,1 ?1)
      READ(IIN, 810, ERR=800, END=1234) ANS2
810 FORMAT(A1)
      IF (ANS2.EQ.1HY)GO TO 520
2000
     CONTINUE
                                           /* CONTINUE WITH NEXT LAYER
```

```
830 CONTINUE
         IF (IB.GT.1)GO TO 855
    OBTAIN MATERIAL NAMES TO MATCH MATERIAL NUMBERS (USED BY PICTURE)
        OPEN (UNIT-8, NAME = ! INPI.DAT', TYPE = !OLD', RECORDS IZE = 132)
   6000 CONTINUE
        READ(8,840) MNUMB
        IF (MNUMB.EQ.O) GO TO 6000
        IF (MNUMB.LT.O) GO TO 850
        BACKSPACE (UNIT=8)
        READ (8,840) MNUMB, CHAR3 (MNUMB)
   840 FORMAT(13,11X,A10)
        GO TO 6000
   850 CONTINUE
        REWIND (UNIT-8)
        CLOSE (UNIT=8, STATUS= 'KEEP')
        IF (ANS9.EQ.1HY)GO TO 911
  855 CONTINUE
       DO 910 INC1=1, NMB2
       DO 910 INC2=1, NMB4
        IF (METRIX. EQ. 0) XP(IB, INC1, INC2) = XP(IB, INC1, INC2)/12.
        IF (METRIX. EQ. 1)XP(IB, INC1, INC2)=XP(IB, INC1, INC2)/2.54/12.
  910 CONTINUE
  911 CONTINUE
 C DISPLAY PICTURE OF COMPLETE STRUCTURE ON SCREEN
       CALL PICTUR(5, IB)
       WRITE(IIN2,870)MBP(IB)
  870 FORMAT (///, 1H , 'ARE THERE ANY CORRECTIONS FOR BODY PT. 1,15,1 ?1)
       READ (IIN, 810, ERR=860, END=1234) ANS4
       IF (ANS4.EQ.1HY)GO TO 370
   ADD STRUCTURE TO STRUCTURE FILE
       IF(STRFLG.EQ.1)CALL STRUCT(2, 18)
       GO TO 820
       CONTINUE
C IF STRUCTURE FOR BODY POINT MATCHES STRUCTURE FOR PREVIOUS
C BODY POINT THEN USE SAME STRUCTURE DATA
       TINI(IB)=TINI(IB-1)
       SINKT(IB)=SINKT(IB-1)
      XFIJ(IB)=XFIJ(IB-1)
      NS(IB)=NS(IB-1)
      DO 7000 KKKK=1,NS(1B-1)
      LS(IB, KKKK)=LS(IB-1, KKKK)
      DO 8000 LLLL=1,6
      XP(IB,KKKK,LLLL)=XP(IB-1,KKKK,LLLL)
8000
      CONTIN 'E
      DO 9000 MMMM-1,3
      MATS(IB, KKKK, MMMM)=MATS(IB-1, KKKK, MMMM)
9000
      CONTINUE
7000
      CONTINUE
      IF (ANS5.EQ.1HY)GO TO 911
      GO TO 830
820 CONTINUE
1000 CONTINUE
                                   /# CONTINUE WITH NEXT BODY POINT
```

WRITE(IFN2,880)

880 FORMAT(//,1X,* MODEL COMPLETE - - - - - GONE TO EXECUTE*)

1234 CONTINUE

STOP
END

ORIGINAL PACE IS

```
SUBROUTINE INTF(X,P,N,Y)
    SUBROUTINE TO INTERPOLATE MONO AND BIVARIATE TABLES FOR PROPERTIES
       PARAMETER (NMB8=41, NMB9=41, NMB11=20, NMB12=8)
       COMMON/DTA/CC (NMB8, NMB9), BSV (NMB8, NMB11, NMB12)
   CHECK TO SEE IF TABLE IS BIVARIATE
       IF(CC(N,2).LT.0.0)GO TO 2000
   MONOVARIATE INTERPOLATION - DATA STORED IN CC(N, J)
       J=CC(N, 1)
       J1=J#2
       XLST=CC(N,2)
       XHST=CC(N, J1)
       IF(X.EV.XLST)GO TO 700
       IF(X.LT.XLST)GO TO 100
       IF(X.GT.XHST)GO TO 200
       JT=4
 500
      CONTINUE
       IF(CC(N, JT)=X)300,600,400
 300
      CONTINUE
       JT=JT+2
       GO TO 500
 400
      CONTINUÉ
      N1=JT-2
      N2=N1+1
      TL=EN
      N4=N3+1
      GO TO 900
 600 CONTINUE
      I+TL=TM
      Y=CC(N, NT)
      GO TO 1000
 700
      CONTINUE
      Y=CC(N,3)
      GO TO 1000
 100 CONTINUE
      N1=2
      N2=3
      N3=4
      N4=5
      GO TO 900
 200 CONTINUE
      N1=2*J-2
      N2=N1+1
      N3=2#J
      N4=N3+1
 900 CONTINUE
C COMPUTÉ PROPERTY
     SL=(CC(N, N4)-CC(N, N2))/(CC(N, N3)-CC(N, N1))
     Y=CC(N, N2)+SL+(X-CC(N, N1))
1000 CONTINUE
     GO TO 3000
2000 CONTINUE
  BIVARIATE TABLES
   INDEPENDENT VARIABLES IN CC(N, J)
   DEPENDENT VARIABLES IN BSV(N, JT, IL)
```

```
N9=-CC(N,2)+2.0
       N8=4
                                                  ORIGINAL PAGE IS
 450 CONTINUE
                                                  OF POOR QUALITY
       IF(CC(N.N8)-P)351,352,353
 351
      COMTINUE
       IF(N8.GE.N9)GO TO 375
       N8=N8+1
      GO TO 450
 352 CONTINUE
      GO TO 375
      CONTINUE
      N7=N8-1
      GO TO 560
 375
      CONTINUE
      N7=N8
      PFAC=0.0
      GO TO 561
 560 CONTINUE
C FIND INCREMENT IN PRESSURE DIRECTION
      PFAC=(P-CC(N, N7))/(CC(N, N8)-CC(N, N7))
 561
      CONTINUE
      L8=-CC(N,2)+4.0
      L9=-CC(N,2)+2.0+CC(N,1)
      CONTINUE
      IF(CC(N,L8)-X)751,752,753
 751
      CONTINUE
      IF(L8.GE.L9)GO TO 775
      L8=L8+1
      GO TO 550
 752
      CONTINUE
      GD TO 775
      CONTINUE
      L7=L8-1
      GO TO 760
 775 CONTINUE
      L7=L8
      TFAC=0.0
      GO TO 761
760 CONTINUE
C FIND INCREMENT IN TEMPERATURE DIRECTION
      TFAC=(X-CC(N, L7))/(CC(N, L8)-CC(N, L7))
 751 CONTINUE
      1R=N8-2
      1L=N7-2
      JT=L7-N9
     F1=BSV(N, JT, IL)+PFAC*(BSV(N, JT, IR)-BSV(N, JT, II.))
     F2=BSV(N, JB, IL)+PFAC*(BSV(N, JB, IR)-BSV(N, JB, IL))
 FIND PROPERTY
      Y=F1+TFAC*(F2-F1)
3000 CONTINUE
      RETURN
      END
```

SUBROUTINE LOAD (MP, 15, 171, 172)
SUBROUTINE TO LOAD GEOMETRIC AND MATERIAL IDENTIFICATION INTO COMMON GAP PARAMETER (NMB1=20, NMB2=6, NMB3=3, NMB4=6, NMB9=40) COMMON/GAP/T1, T2, X(6), M(3), TOL, BET, SIG, XM, CAP1, CAP2, XK COMMON/LD/LS(NMB1, NMB2), XP(NMB1, NMB2, NMB4), MATS(NMB1, NMB2, NMB3), NS(NMB1) COMMON/ARA/T(NMB5),TO(NMB5),C(NMB5),CD(NMB5),ICD(NMB5),L(NMB5,2) DT=25.0 T1=T0(1T1)+DT T2=T0(1T2)-DT C LOAD MATERIALS DO 100 1=1,3 M(I)=MATS(MP, IS, I) 100 CONTINUE C LOAD GEOMETRY DO 200 J=1,6 X(J)=XP(MP, IS, J)CONTINUE RETURN

END

```
ORIGINAL PLACE IS
         SUBROUTINE NODE
    THIS SUBROUTINE SETS UP THE NODAL NETWORK
                                                        OF POOR QUALITY
        PARAMETER (NMB1=20, NMB2=6, NMB3=3, NMB4=6, NMB5=40, NMB6=10)
COMMON /NODES/NN, I, TT, TINIT, TSINK, FIJ, TMPMAX (NMB6)
        COMMON/GAP/T1, T2, TH1, TH2, TH3, TH, P, H, M1, M2, M3, TOL, BET, SIG, XM,
               CAPI, CAP2, XK
        COMMON/INIT/TSTART, TSTOP, TIMPT, DTIM, NEP, NEXT, METRIC,
       $ METRIK, METRIX, NSTP, IPFLAG, TINI (NMB1), SINKT (NMB1), XFIJ (NMB1),
       $ MBP(NMB1), IIN, IIN2
        COMMON/TAX/ TK(NMB2),XX(NMB5)
        COMMON/TIME/NNDS, CONV, CRAD, STAB, ISBFG, NCDS
        COMMON/ARA/T (NMB5), TO (NMB5), C(NMB5), CD (NMB5), ICD (NMB5), L(NMB5,2)
        COMMON/LD/LS(NMB1, NMB2), XP(NMB1, NMB2, NMB4), MATS(NMB1, NMB2, NMB3),
       COMMON/PICT/NNIS(NM31, NMB2)
       COMMON/TITLE/CHAR2, CHAR1, FNAM1, FNAM3
       COMMON/PRESS/PRES
       CHARACTER*4 UNIT1(2)
       CHARACTER*6 UNIT2(2)
       CHARACTER#13 CHAR1 (NMB6)
       CHARACTER*10 CHAR2(NMB6)
       CHARACTER#20 CHAR(7), FNAM1, FNAM3
       DIMENSION XXX(NMB5)
       DATA UNIT1/ IN. 1, 1 CM. 1/
       DATA UNITZ/ DEG FI, DEG KI/
       DATA CHAR/
                     1 SLAB
                     TRADIATION GAP
                     HONEY COMB
                    *CORRUGATED
                    'Z STANDOFF
                    THIN SKIN
                    ABLATOR SUBLIMER
       10=0
      METRC=METRIK+1
      DO 7000 J=1,NN
       IST=LS(1,J)
       IF(IST.EQ.1) GO TO 140
       IF(IST.EQ.7) GO TO 140
      GO TO 120
  140 CONTINUE
C DIVIDE SLAB OR ABLATOR INTO NX-1 LAYERS
      THKNS=XP(1,J,1)
      MA=MATS(1, J, 1)
      CALL PROP(TT, PRES, MA, RO, CP, XK, EP)
      DX=SQRT(DTIM#2.0#XK/(RO#CP))
      NX=THKNS/DX+1
      IF (NX+1.GE. NMB5) GO TO 999
      NNIS(I,J)=NX
      TK(J)=THKNS/FLOAT(NX)
  ASSIGN NODE NUMBERS AND INITIAL TEMPERATURES, NODE NUMBERS FOR
  EACH CONDUCTOR, NODE POSITIONS FOR SLAB AND ABLATOR
      DO 130 K=1,NX
      10=10+1
      ICD(IC)=J
```

```
IU= IC
                                                           ORIGINAL PAGE IN
      IL=IC+1
      L((C,1)=|U
                                                           OF POOR QUALITY
      L(1C,2)=1L
      TO(IU)=TINIT
      TO(IL)=TINIT
      T(1U)=TO(1U)
      T(IL)=TO(IL)
      XX([L)=XX([U)+TK(J)
130 CONTINUE
      GO TO 7000
      CONT!NUE
  ASSIGN NODE NUMBERS, INITIAL TEMPERATURES, NODE NUMBERS FOR EACH
  CONDUCTOR, NODE POSITIONS FOR ALL OTHER STRUCTURE TYPES
      10=10+1
      1CD(1C)=J
      IU= IC
      IL=10+1
      L((C,1)=1U
      L(IC,2)=IL
      TO(IU)=TINIT
      TO(IL)=TINIT
      T(IU)=TO(IU)
      T(IL)=TO(IL)
      XX(IL)=XX(IU)+XP(I,J,4)
7000 CONTINUE
      NNDS=1L
      NCDS=1C
      WRITE(9,769)
      WRITE(9,768)MBP(1)
      IF (METRIK. EQ. 0) AT INIT=TINIT-459.6
      IF (METRIK. EQ. 1) ATINIT=TINIT/1.8
      IF (METRIK .. EQ. 0) ATS INK-TS INK-459.6
      IF (METRIK. EQ. 1) ATS INK=TS INK/1.8
     WRITE(9,721)ATINIT, UNIT2(METRC), ATSINK, UNIT2(METRC), FIJ
     DO 137 KK=1, NCDS
     NOD1=L(KK,1)
     IF (METRIK. EQ. 0)XXX (NOD1)=XX (NOD1) #12.
      IF(METRIK.EQ.1)XXX(NOD1)=XX(NOD1)+12.+2.54
     WRITE(9,770) NOD1, XXX (NOD1), UNIT1 (METRC)
     WRITE(9,771)KK
      JST=1CD(KK)
     KST=LS(1,JST)
     WRITE(9,772)KST, CHAR(KST)
 WRITE OUT DESCRIPTION OF NETWORK
     DO 429 LL=1,3
     MA=MATS(1, JST, LL)
     IF(MA.EQ.0)GO TO 429
     WRITE(9,773)LL, CHAR2(MA)
429 CONTINUE
773 FORMAT(1H ,20X, MATERIAL 1,12, 1 = 1,410)
     NOD2=L(KK,2)
     IF (METRIK. EQ. 0)XXX (NOD2) =XX (NOD2) #12.
     IF (METRIK. EQ. 1) XXX (NOD2) = XX (NOD2) +12. +2.54
     WRITE(9,774)NOD2,XXX(NOD2),UNIT1(METRC)
```

ORIGINAL PAGE (& OF POOR QUALITY

```
CONTINUE
137
721 FORMAT(1H ,5X, TINIT = 1, F7.2, A6, 4X, TSINK = 1, F7.2, A6, 4X,
                        * 1,F12.3)
                 'FIJ
768 FORMAT(1H , 28X, 'BODY POINT', 15)
769 FORMAT (1H1, 25x, 'STRUCTURE DEFINITION')
770 FORMAT (//, 1H , 15x, 'NODE NUMBER = 1, 15,7x,
                'DISTANCE FROM SURFACE = 1,615.6,A4)
771 FORMAT(1H, 20X, CONDUCTOR NUMBER = 1,15)
772 FORMAT(1H, 20X, STRUCTURE TYPE = 1,15,5X, A20)
774 FORMAT(1H, 15X, NODE NUMBER = 1,15,7X,
$ DISTANCE FROM SURFACE = 1,615.6,A4)
       RETURN
999
             CONTINUE
       WRITE (11N2,998)
       WRITE(9,998)
998 FORMAT (1X, 'ERROR---THE NUMBER OF NODES EXCEEDS THE ARRAY .,
                'DIMENSIONING.')
       STOP
       END
```

```
GRICADA DE SA
                                                              of book Gavella
      SUBROUTINE PICTUR(11N3,MP)
  SUBROUTINE THATS PRINTS A PICTURE OF THE STRUCTURE AT A BODY POINT
      PARAMETER (NMB1=20,NMB2=6,NMB3=3,NMB4=6,NMB6=10,NMB7=100)
      COMMON/LD/LS(NMB1,NMB2).XP(NMB1,NMB2,NMB4),MATS(NMB1,NMB2,NMB3),
            NS(NMB1)
      COMMON/INIT/TSTART, TSTOP, TIMPT, DTIM, NOP, NEXT, METRIC,
     $ mëtrik,metrix,nstë,ipflàg,tini(nmbi),sinkt(nmbi),xfiJ(nmbi),
     $ MBP(NMB1), IIN, IIN2
      COMMON/PICT/NNIS(NMB1,NMB2)
      COMMON/TITLE/CHAR2M, CHAR1, FNAM1, FNAM3
      COMMON/TITL2/CHARS
      CHARACTER#4 UNIT(2)
      CHARACTÉR*20 CHAR(7), FNAM1, FNAM3
      CHARACTER#10 CHAR2(NMB7), CHAR3(NMB7), CHAR2M(NMB6)
      CHARACTER#13 CHARI (NMB6)
      DIMENSION ZXP(NMB1, NMB2, NMB4)
      INTEGER ANS1, ANS2, ANS4, ANS9
DATA UNIT/ IN. 1, CM. 1/
   NAME OF EACH STRUCTURE TYPE
      DATA CHAR/
                   'SLAB
                   TRADIATION GAP
                   THONEY COMB
                   100RRUGATED
                   'Z STANDOFF
                   THIN SKIN
                   FABLATOR SUBLIMER
  CONVERT UNITS OF MAT DIMENSIONS FOR PICTURE
      DO 300 INC1=1,NMB2
      DO 300 INC2=1,NME4
      IF (METRIK. EQ. 0) ZYP (MP, INC1, INC2) = XP (MP, INC1, INC2) * 12.
      IF (METRIK.EQ. 1) ZXP (MP, INC1, INC2) = XP (MP, INC1, INC2) + 12. +2.54
 300 CONTINUE
      METRC=METRIK+1
      IF(IIN3.E0.9)GO TO 3
C IF PICTURE DISPLAYED TO SCREEN(NODES NOT INCLUDED)
      DO 2 | KJ=1, NMB7
      CHAR2(IKJ) = CHAR3(IKJ)
      CONTINUE
      GO TO 1
      CONTINUE
   IF PICTURE PRINTED TO OUTPUT FILE (NODES INCLUDED)
      DO 4 | KJ=1, NMB6
      CHARZ(IKJ)=CHAR2M(IKJ)
      CONTINUE
      CONTINUE
   CREATE THE PICTURE
      IJK=1
      WRITE(IIN3,619)MBP(MP)
  TOP LAYER BOUNDARY
      IF(11N3.EQ.5)WRITE(11N3,620)
      IF(11N3.EQ.9)WRITE(11N3.720)IJK
```

LOOP 1 - NUMBER OF LAYERS FOR THIS BODY POINT

- LÁYĒR NUMBER

IJK=IJK+1

```
- BODY POINT NUMBER
Č
       IIN3 = 5 DISPLAY TO SCREEN
                                             (NODES AVAILABLE)
       11N3 = 9 PRINT TO OUTPUT FILE
C
                                             (NODES NOT AVAILABLE)
       DO 700 J=1,NS(MP)
   SLAB
       IF (LS(MP, J).EQ.1.AND. | IN3.EQ.5) WRITE (| IN3,621) CHAR2 (MATS (MP, J, 1)),
             CHAR(LS(MP, J)), ZXP(MP, J, 1), UNIT (METRO)
       IF(LS(MP, J).EQ.1.AND. | 1N3.EQ.9)GO TO 100
   ABLATOR SUBLIMER
       IF (LS(MP, J).EQ.7.AND. | IN3.EQ.5) WRITE (| IN3,621) CHAR2 (MATS(MP, J, 1)),
             CHAR(LS(MP, J)), ZXP(MP, J, 1), UNIT (METRC)
       IF(LS(MP, J).EQ.7.AND. | 1N3.EQ.9)GO TO 100
C RADIATION GAP
       IF (LS(MP, J).EQ.2) WRITE (| 1N3,622) ZXP(MP, J, 1), UNIT (METRC)
     $CHAR2 (MATS (MP, J, 1)), CHAR (LS (MP, J)), ZXP (MP, J, 4), UNIT (METRO),
      $ZXP(MP, J, 2), UNIT (METRC), CHAR2 (MATS (MP, J, 2))
C HONEY COMB
       IF (LS(MP, J).EQ.3) WRITE (IIN3,623) ZXP (MP, J, 1), UNIT (METRC),
     $CHAR2(MATS(MP.J,1)), CHAR2(MATS(MP,J,3)), CHAR(LS(MP,J)),
     $ZXP(MP, J, 4), UNIT(METRC), ZXP(MP, J, 2), UNIT(METRC),
             CHAR2 (MATS (MP, J, 2))
  CORRUGATED
      IF(LS(MP, J).EQ.4)WRITE(IIN3,624)ZXP(MP, J, 1), UNIT(METRC),
     $CHAR2(MATS(MP, J, 1)), CHAR2(MATS(MP, J, 3)), CHAR(LS(MP, J)),
     $ZXP(MP, J, 4), UNIT(METRC), ZXP(MP, J, 2), UNIT(METRC),
             CHAR2 (MATS (MP, J, 2))
  Z STANDOFF
      IF(LS(MP, J).EQ.5)WRITE(IIN3,625)ZXP(MP, J, 1), UNIT(METRC),
     $CHAR2(MATS(MP, J, 1)), CHAR2(MATS(MP, J, 3)), CHAR(LS(MP, J)),
     $ZXP(MP, J, 4), UNIT(METRC), ZXP(MP, J, 2), UNIT(METRC),
             CHAR2(MATS(MP, J, 2))
   THIN SKIN
      IF(LS(MP, J).EQ.6)WRITE(IIN3,626)CHAR2(MATS(MP, J, 1)),
             CHAR(LS(MP, J)), ZXP(MP, J, 4), UNIT (METRC)
 200
           CONTINUE
C BOTTOM LAYER BOUNDARY
      IF(11N3.EQ.5)WRITE(11N3,620)
      IF(11N3.EQ.9)WRITE(11N3,720)IJK
      IJK=IJK+1
      GO TO 700
 100 CONTINUE
  SLAB / ABLATOR SUBLIMER (CONTINUED)
      NX=NNIS(MP, J)-1
      IF(NX.LE.0)GO TO 11
      NXO2=NX/2+1
      DO 10 K=1,NX
      IF (K.EQ.1.AND.K.LT.NXO2) WRITE (IIN3,800) IJK
      IF(K.GT.1.AND.K.LT.NXO2)WRITE(IIN3,801)IJK
      IF(K.EQ.NXO2)WRITE(IIN3,802)IJK,CHAR2(MATS(MP,J,1)),
             CHAR(LS(MP, J)), ZXP(MP, J, 1), UNIT (METRC)
      IF(K.GT.NXO2.AND.K.LT.NX)WRITE(IIN3,801)IJK
      IF (K.GT. NXO2. AND.K. EQ. NX) WRITE (11N3, 803) IJK
      IJK=IJK+1
10
      CONTINUE
11
      CONTINUE
```

```
IF(NX.EQ.O)WRITE(IIN3,621)CHAR2(MATS(MP, J,1)),
             CHAR(LS(MP, J)), ZXP(MP, J, 1), UNIT(METRC)
      GO TO 200
700
      CONTINUE
619
      FORMAT (1H1, THIS IS THE CONFIGURATION FOR BODY PT. 1, 15, ///)
620
      FORMAT(1X,60(!=!),3X,5(!=!))
      FORMAT (66X, 111, /,
621
             31X, A10,3X, A25, F8.6, A4./.
        66X, 111)
622 FORMAT(18X, FB.6, A4, 1X, A10, 25X, 111, /,
             1x,60(!-!)5x,!!!,/,
        66X, 111,/
        44X, A20, F8.6, A4,/,
        66X,'|',/,
|1X,60('-')5X,'|',/,
|18X,F8.6,A4,1X,A10,25X,'|')
     FORMAT(18x,F8.6,A4,1x,A10,25x,'1',/,
                                             ',36X,'|',/,
                                             1,1X,A10,3X,A20,F8.6,A4,/,
                                              ,36X,'I',/,
                                            1,36X,111,/,
        1X,60(1-1)5X,111,/,
        18X, F8.6, A4, 1X, A10, 25X, 111)
624 FORMAT(18x, F8.6, A4, 1x, A10, 25x, 111,/,
             1X,60(!-!)5X,!!!,/,
                                            1,36x,111,/,
                                            1,36X,111,/,
                                            1,1X,A10,3X,A20,F8.6,A4,/,
                                          V ',36x,'1',/,
                                           V',36X,'|',/,
        1X,60(1-1)5X,111,/,
18X,F8.6,A4,1X,A10,25X,111)
625 FORMAT (18X, F8.6, A4, 1X, A10, 25X, 111,/,
             1X,60(1-1)5X,111,/,
             ZZZZZZ
                                            1,36X,111,/,
                                 ZZZZZZ
                                            1,36x,111,/,
                                            1,1X,A10,3X,A20,F8.6,A4,/,
                   ZZZZZZ
                                      ZZZZZZ, 35x, 111,/,
        1X,60(1-1)5X,111,/,
        18X,F8.6,A4,1X,A10,25X,(11)
626 FORMAT (31X, A10, 3X, A20, F8.6, A4)
720 FORMAT(1x,3('='),12,'. 0',52('='), .,5('-'))
800 FORMAT(4x,12,'. 0',57x,'!')
     FORMAT (4X, 12, 1. 01,57X, 1.)
801
     FORMAT(4X, 12, 1. 01, 22X, A10, 3X, A20, F8.6, A4)
802
     FORMAT(4X, 12, 1. 01, 57X, 111)
803
     RETURN
     END
```

```
(4)
```

```
(+)
```

ORIGINAL PAGE OF

OF POOR QUALITY

```
SUBROUTINE PROP(TI, P, MAT, RHO, CP, XK, EP)
UNITS ARE BTU, FT, SEC, OR, LBM
TABLES ARE DENSITY, SP.HT., CONDUCTIVITY, EMISSIVITY IN THAT ORDER AND REPEATED
T1 =TEMP.
MAT-MATERIAL NUMBER
RHO-DENSITY
OP -SPECIFIC HEAT
XC -CONDUCTIVITY
EP MEMISSIVITY
    MDEN= (MAT-1) *4+1
    MSCP-MDEN+1
    MOON=MSCP+1
    MEP=MOON+1
   CALL INTP(T1, P, MDEN, RHO)
CALL INTP(T1, P, MSCP, CP)
CALL INTP(T1, P, MCON, XK)
CALL INTP(T1, P, MEP, EP)
   RETURN
   END
```

C- 3

```
SUBROUTINE RGAP
C SUBROUTINE COMPUTES EQUIVALENT THERMAL CONDUCTANCE THROUGH
C RADIADION GAP
      COMMON/GAP/T1, T2, TH1, TH2, TH3, TH, P, H, M1, M2, M3, TOL, BET, SIG,
     $ XM, CAP1, CAP2, XK
      COMMON/PRESS/PRES
      TTIPTI
      TT2=T2
      TAO=T1
      TB0=T2
      DO 100 I=1,100
 FIND PROPERTIES OF UPPER AND LOWER SURFACES
      CALL PROP(TT1, PRES, M1, RHO1, CP1, XK1, EP1)
      CALL PROP(TT2, PRES, M2, RH02, CP2, XK2, EP2)
      f1=1.0/EP1
      F2=1.0/EP2
      SF=1.0/(F1+F2-1.0)
      YK1=XK1/TH1
      YK2=XK2/TH2
      YK3=$IG#$F*(TAO**2+TBO**2)*(TAO+TBO)
  COMPUTE INTERIOR SURFACE TEMPERATURE OF UPPER AND LOWER SURFACE
      TA=((T1*YK1+TBO*YK3)/(YK1+YK3))*BET+(1.0-BET)*TAO
      TB=((T2*YK2+TA0*YK3)/(YK2+YK3))*BET+(1.0+BET)*TB0
      TEST1 = ABS((TA-TAO)/TAO)
      TEST2=ABS((TB-TBO)/TBO)
   CHECK FOR CONVERGENCE
      IF (TESTI.LT.TOL.AND.TEST2.LT.TOL)GO TO 200
      TT1=(T1+TA)/2.0
      TT2=(T2+TB)/2.0
      TAO=TA
      TBO=TB
 100
      CONTINUE
      GO TO 300
200 CONTINUE
C COMPUTE EQUIVALENT CONDUCTANCE
      XK=YK1*YK2*YK3/(YK1*YK2+YK1*YK3+YK2*YK3)
      XM=RH01 *TH1+RH02 *TH2
      CAP1=RHO1*TH1*CP1
      CAP2=RH02*TH2*CP2
      CONTINUE
      RETURN
```

END

OF POOR QUALITY

```
SUBROUTINE SRIPF (NN)
   SUBROUTINE TO FIND RADIATION INTERCHANGE FACTORS
C GIVEN EMISSIVITIES, GEOMETRIC VIEW FACTORS, AREAS UNING THE
C NETWORK METHOD
      COMMON/SF/AR(10), EPP(10), F(10,10), ASF(10,10)
      DIMENSION EB (10), XJ(10), XJN(10), RHO(10)
      BETA=.5
      EMPOW=1000.0
      N=NN
      DO 100 I=1.N
      RI=FLOAT(I)
      EB(1)=EMPOW*R1
      RHO(1)=1.0-EPP(1)
      XJ(1)=EB(1)
 100 CONTINUE
C ITERATE ON RADIOSITY, XJ
      DO 500 M=1,50
      TESTM=1.0E-8
      DO 200 J=1,N
      SUMJF=0.C
      F1=EPP(J)/(1.0-RHO(J)#F(J,J))#EB(J)
     F2=RHO(J)/(1.0-RHO(J)#F(J,J))
     DO 300 K=1,N
      IF (J.EQ.K)GO TO 300
      SUMJF=SUMJF+XJ(K)*F(J,K)
300 CONTINUE
     XJN(J)=(1.0-BETA)*XJ(J)+BETA*(F1+F2*SUMJF)
     TEST=ABS(XJ(J)-XJN(J))/XJ(J)
     IF (TEST. GT. TESTM) TESTM-TEST
     (L)NLX=(L)LX
200 CONTINUE
     IF (TESTM.LT.TOL) GO TO 600
500 CONTINUE
600 CONTINUE
  COMPUTE NET EXCHANGE BY RADIOSITY DIFFERTICE
  COMPUTE AREA*SCRIPT "F" BY DIVISION BY BLACK BODY EMISSIVE POWER
     DO 800 I=1,N
     DO 900 J=1,N
     ASF(1, J)=0.0
     IF(1.EQ.J)GO TO 900
     ASF(1, J)=AR(1)*F(1, J)*(XJ(1)-XJ(J))/(EB(1)-EB(J))
900 CONTINUE
800 CONTINUE
     RETURN
     END
```

```
SUBROUTINE STAND
  SUBROUTINE TO COMPUTE EQUIVALENT CONDUCTANCE, MASS, CAPACITANCE
C OF Z STANDOFF STRUCTURE
       COMMON/GAP/T1, T2, TH1, TH2, TH3, TH, P, H, M1, M2, M3, TOL, BET, SIG,
      $ XM.CAP1.CAP2.XK
      COMMON/FACT/XX(10,2), YY(10,2)
      COMMON/SF/AR(10), EPP(10), F(10,10), ASF(10,10)
       COMMON/PRESS/PRES
       H2=TH/2.0
       P2=P/2.0
       CONK=1.0EB
       T3=(T1+T2)/2.0
      VOL=TH1+TH2+(2.0#H+TH) #TH3/P
   SET COORDINATES OF INTERIOR TO COMPUTE VIEW FACTORS
      DO 100 1=1.4
      XT=0.0
      YT=0.0
      DO 200 J=1,2
       IF(I.EQ.1.AND.J.EQ.1)YT=TH
       IF(1.EQ.1.AND.J.EQ.2)XT=P
      IF(1.EQ.2.AND.J.EQ.2)XT=P
      IF(1.EQ.3.AND.J.EQ.1)XT=P
      IF(I.EQ.3.AND.J.EQ.2)YT#TH
      IF(1.EQ.4.AND.J.EQ.2)YT=TH
      TX=(L_{\lambda}I)XX
      TY=(L,1)YY
 200 CONTINUE
 100 CONTINUE
C COMPUTE INTERIOR VIEW FACTORS
      CALL VFAC(4)
      DO 1000 1=1,100
      T30=13
      CALL PROP(11, PRES, M1, RHO1, CP1, XK1, EPP(1))
      CALL PROP(T2, PRES, M2, RHO2, CP2, XK2, EPP(2))
      CALL PROP(T3, PRES, M3, RHO3, CP3, XK3, EPP(3))
      EPP(4)=EPP(3)
      IF(I.NE.1)GO TO 1001
C GET RADIATION INTERCHANGE FACTORS
      CALL SRIPF(4)
 1001 CONTINUE
  COMPUTE CONDUCTION PATH VALUE
      C1A=XK1*TH1/P2
      C1B=CONK #TH3/2.0
      C1C=XK3*TH3/(2.0*H2)
     C1=C1A#C1B#C1C/(C1A#C1B+C1A#C1C+C1B#C1C)
     DIS=P2-(H+TH3)/2.0
     C3A=XK1*TH1/DIS
     C3B=CONK*(H+TH3/2.0)
     C3C=XK34TH3/(2.04H2)
     C3=C3A*C3B*C3C/(C3A*C3B+C3A*C3C+C3B*C3C)
     C2C=C3C
     C28=C38
     C2A=C1A#XK2/XK1
     C2=C2A*C2B*C2C/(C2A*C2B+C2A*C2C+C2B*C2C)
     C4A=C1A#XK2/XK1
```

ORIGINAL PAGE IS OF POOR QUALITY

```
C4B=C1B
      C4C=C1C
      C4=C4A*C4B*C4C/(C4A*C4B+C4A*C4C+C4B*C4C)
 COMPUTE RADIATION PATH VALUES
      R1=ASF(1,4)#SIG*(T1**2+T3**2)*(T1+T3)
      R2=ASF(1,3)#SIG*(T1++2+T3++2)*(T1+T3)
      R3=ASF(4,2)*SIG*(T3**2+T2**2)*(T3+T2)
      R4=ASF(3,2)*SIG*(T3**2+T2**2)*(T3+T2)
      R5=ASF(1,2)+SIG+(T1++2+T2++2)+(T1+T2)
C FIND NEW STANDOFF TEMPERATURE
      T3N=(T1*(R1+R2+C1+C3)+T2*(C2+R3+C4+R4))/
     $ (R1+R2+R3+R4+C1+C2+C3+C4)
      T3=(1.0-BET)*T3+BET*T3N
      TEST=ABS(T3-T30)/T3
      IF (TEST.LT.TOL) GO TO 2000
      T30=T3
 1000 CONTINUE
 2000 CONTINUE
C FIND MASS, CAPACITORS, AND EQUIVALENT CONDUCTIVITY
      XM=TH1 #RH01+TH2*RH02+RH03*(2.0*H+TH)*TH3/P
      CAP1=XM/2.0*CP1
      CAP2=XM/2.0*CP2
      T12=ABS(T1-T2)
      T13=ABS(T1-T3)
      Q=(T12*R5+T13*(C2+C4+R3+R4))/P
      XK=0/T12
      RETURN
      END
```

ORIGINAL PAGE IS OF POOR QUALITY

```
SUBROUTINE STRUCT (M, N)
     SUBROUTINE THAT HANDLES STRUCTURE FILE
 C EITHER ADDING NEW STRUCTURES OR COPYING OLD STRUCTURE
        PARAMETER (NMB1=20, NMB2=6, NMB3=3, NMB4=6, NMB6=10)
        COMMON/INIT/TSTART, TSTOP, TIMPT, DTIM, NBP, NEXT, METRIC,
       $ METRIK, METRIX, NSTP, IPPLAG, TINI (NMB.1), SINKT (NMB1), XFIJ (NMB1),
       $ MBP(NMB1), IIN, IIN2
        COMMON/TITLE/CHAR2, CHAR1, FNAM1, FNAM3
        COMMON/LD/LS(NMB1, NMB2), XF(NMB1, NMB2, NMB4), MATS(NMB1, NMB2, NMB3),
       $ NS(NMB1)
        CHARACTER#10 CHAR2(NMB6)
        CHARACTER#13 CHAR1 (NMB6)
       CHARACTER#20 FNAM1 FNAM3
       CHARACTER*80 LABEL1, LABEL2
        IFLAG=-9999
       OPEN (UNIT=10, NAME=FNAM3, TYPE= OLD , RECORDS ZE=132)
        IF (M.EQ.2) GO TO 500
 C LOOKUP OLD STRUCTURE FROM STRUCTURE FILE
  10
       WRITE(IIN2,20)MBP(N)
       FORMAT (1H , WHAT IS THE STRUCTURE NUMBER FOR BODY PT. 1,15,1 21)
READ (11N, *, ERR=10, END=1234) ND
  20
 C LOCATE STRUCTURE BY STRUCTURE NUMBER
       READ(10.40,END=9000)NA
       FORMAT(15)
       IF (NA.EQ.ND)GO TO 150
       IF (NA.EQ. IFLAG) GO TO 9000
       GO TO 35
 C REACHED END OF FILE WITHOUT LOCATING STRUCTURE NUMBER
 9000 WRITE(11N2,9001)ND
 9001 FORMAT (1H , UNABLE TO FIND STRUCTURE NUMBER 1,15)
       REWIND (UNIT-10)
       GO TO 10
 150 CONTINUE
       BACKSPACE (UNIT=10)
C OBTAIN STRUCTURE DATA FOR DESIRED STRUCTURE NUMBER
       READ(10,55)NA, NS(N),N3,N4
 55
       FORMAT(15,5X,3(15,5X))
       READ(10,60)LABEL1,LABEL2
 60
       FORMAT (5X, A80, /, 5X, A80)
      WRITE(IIN2,70)NA, LABEL1, LABEL2
      FORMAT (/,10x, 'STRUCTURE NUMBER + 1,15,/,1x, A80,/,1x, A80)
 70
       DO 200 1=1,NS(N)
      READ(10,210,END=1000)LS(N, I), (MATS(N, I, J), J=1, N3),
      $ (XP(N,1,J),J=1,N4)
 210 FORMAT(10X, 15, 315, 6E19.7)
 200 CONTINUE
      GO TO 1000
C ADD NEW STRUCTURE TO STRUCTURE FILE
 500 CONTINUE
 510 WRITE(11N2,520)MBP(N)
 520 FORMAT (1H , WHAT IS THE STRUCTURE NUMBER FOR BODY PT. 1,15)
      READ(IIN, #, ERR=510, END=1234) ND
C SEARCH THROUGH STRUCTURE FILE
 551 DO 550 IK#1,1000
```

ORIGINAL PAGE 191 OF POOR QUALITY

```
READ (10,40,END#560) NB
C CHECK TO SEE IF STRUCTURE NUMBER ALREADY EXISTS
      IF (ND. EQ. NB) WRITE (11N2,530) ND
      FORMAT(1H , STRUCTURE NUMBER 1,15, ALREADY EXISTS.1)
      IF (ND. EQ. NB) REWIND (UNIT=10)
      IF(ND.EQ.NB)GO TO 510
C CHECK FOR END OF FILE
      IF (NB.EQ. IFLAG) GO TO 560
 550
      CONTINUE
      GO TO 551
 560 BACKSPACE (UNIT=10)
C ADD NEW STRUCTURE DATA
      N4=NMB4
      N3=NMB3
      WRITE(10,570)ND, NS(N), N3, N4
 570 FORMAT(15,5X,3(15,5X))
      WRITE(11N2,580)MBP(N)
 580 FORMAT (1H , GIVE A TWO LINE DESCRIPTION OF THE STRUCTURE!,
     $ 1 FOR BODY PT. 1,15)
      READ(IIN, 590) LABEL1, LABEL2
 590 FORMAT(A80,/,A80)
      WRITE(10,600)LABEL1,LABEL2
 600 FORMAT (5X, ABO, /, 5X, ABO)
      DO 700 I=1,NS(N)
      WRITE(10,610)LS(N,1),(MATS(N,1,J),J=1,N3),(XP(N,1,J),J=1,N4)
 610 FORMAT(10X, 15, 315, 6E15.7)
 700 CONTINUE
      WRITE(10,800) IFLAG
 800 FORMAT(15)
 1000 CONTINUE
      CLOSE (UNIT=10, STATUS= *KEEP*)
      RETURN
 1234 CONTINUE
      STOP
```

END

```
SUBROUTINE SUBPR(X,N,Y)
   SUBROUTINE TO RETURN TEMPERATURE OF SUBLIMATION AND HEAT OF
  SUBLIMATION, Y, GIVEN PRESSURE, X.
             RETURN TEMPERATURE
Č
      N = 2 RETURN PRESSURE
             PRESSURE
      PARAMETER (NMB9=41)
      COMMON/CSUB/CCS(2.NMB9)
      J=CG9(N, 1)
      J1=J#2
      XLST=CCS(N, 2)
      XHSTACCS(N, J1)
      IF(X.EQ.XLST)GO TO 700 IF(X.LT.XLST)GO TO 100
      IF(X.GT.XHST)GO TO 200
      JT=4
 500 CONTINUE
C SEARCH INDEPENDENT VARIABLE
      IF(CCS(N, JT)-X)300,600,400
      CONTINUE
C GO BACK AND CHECK ANOTHER
      S+TL=TL
      GO TO 500
 400 CONTINUE
C X LIES BETWEEN CCS(N, N1) AND CCS(N, N3)
      N1=JT-2
      N2=N1+1
      N3=JT
      N4=N3+1
      GO TO 900
 600 CONTINUE
C X EQUAL TO A INDEPENDENT VARIABLE
      NT=JT+1
      Y=CCS(N,NT)
      GO TO 1000
 700 CONTINUE
C X EQUAL TO LOWEST INDÉPENDENT VARIABLE
       Y=CCS(N,3)
       GO TO 1000
 100 CONTINUE
C X LESS THAN LOWEST INDEPENDENT VARIABLE, EXTRAPOLATE
       N1=2
       N2=3
       N3=4
       N4=5
       GO TO 900
       CONTINUE
C X GREATER THAN HIGHEST INDEPENDENT VARIABLE, EXTRAPOLATE
       N1=2#J-2
       N2 = N1 + 1
       N3=2*J
       N4=N3+1
  900 CONTINUE
```

C FIND SLOPE AND INTERPOLATE
SL=(CCS(N,N4)-CCS(N,N2))/(CCS(N,N3)-CCS(N,N1))
Y=CCS(N,N2)+SL*(X-CCS(N,N1))
1000 CONTINUE
RETURN.
END

ORIGINAL FACE 155 OF POOR QUALITY

ORIGINAL CLASS BY

```
SUBROUTINE THINS
C SUBROUTINE TO SET CAPICITANCE, MASS, AND CONDUCTOR OF INFINITELY
C CONDUCTING OR THERMALLY THIN. PLATE
COMMON/GAP/T1, T2, TH1, TH2, TH3, TH, P, H, M1, M2, M3, TOL, BET, SIG, XM,
CAP1, CAP2, XK
COMMON/PRESS/PRES
T=(T1+T2)/2.0
CALL PROP(T, PRES, M1, RO, CP, XK, EP)
CAP1=RO+CP*TH/2.0
CAP2=CAP1
XM=RO+TH
XK=1.0E10
RETURN
END
```

```
SUBROUTINE THETEP (DTSM, 1)
     SUBROUTINE TO COMPUTE STABLE TIME STEP
        PARAMETER (NMB1=20, NMB2=6, NMB3=3, NMB4=6, NMB5=40)
        COMMON/TIME/NNDS, CONV, CRAD, STAB, ISBFG, NCDS
COMMON/ARA/T(NMB5), TO(NMB5), C(NMB5), CD(NMB5), ICD(NMB5), L(NMB5,2)
        COMMON/LD/LS(NMB1, NMB2), XP(NMB1, NMB2, NMB4), MATS(NMB1, NMB2, NMB3),
               NS(NMB1)
        DTSM=1.0E30
 C GENERAL HEAT BALANCE NODE
        DO 379 J=1, NNDS
        IF(J.NE.1)GO TO 380
    SURFACE NODE
        C1=CONV+CRAD
        C2=CD(1)
        GO TO 381
  380 CONTINUE
        IF (J.NE. NNDS) GO TO 370
 C LAST NODE
       C1=CD(NCDS)
        C2=0.0
        GO TO 381
  370 CONTINUE
 C GENERAL NODE
       JM1=J-1
       C1=CD(JM1)
       C2=CD(J)
  381 CONTINUE
  IF ADJACENT CONDUCTORS ARE THIN SKIN, SKIP
       IF(C1.GT.1.0E9) GO TO 379
       IF(C2.GT.1.0E9) GO TO 379
       STEST=C(J)/((C1+C2)*STAB)
       IF (STEST. LT. DTSM) DTSM=STEST
 379 CONTINUE
  THIN SKIN ALGORITHM
       IF(ISBFG.EQ.0)GO TO 382
       DO 387 KAP=1, NCDS
       JJ=1CD(KAP)
       JN=LS(1,JJ)
       IF(JN.NE.6)GO TO 387
       N1=L(KAP, 1)
       N2=L(KAP, 2)
       KP1=KAP+1
      KM1=KAP-1
       IF(KAP.EQ.1)GO TO 388
       IF (KAP. EQ. NCDS) GO TO 389
  GENERAL THIN SKIN NODE
      STEST=(C(N1)+C(N2))/((CD(KM1)+CD(KP1))*STAB)
      GO TO 390
 388 CONTINUE
  SURFACE NODE
      STEST=(C(N1)+C(N2))/((CONV+CRAD+CD(KP1))*STAB)
      GO TO 390
 389 CONTINUE
C ADIABATIC BACK SIDE
      STEST=(C(N1)+C(N2))/(CD(KM1)*STAB)
```

(+)

390 CONTINUE
IF (STEST.LT.DTSM)DTSM=STEST
CONTINUE
CONTINUE
RETURN
END

```
SUBROUTINE VFAC(NN).
C
       THEORY OF CROSSED STRINGS (PLANAR 2-D)
C
C
      COMMON/FACT/XX(10,2), YY(10,2)
      COMMON/SF/AR(10), EPP(10), F(10,10), ASF(10,10)
      DO 100 I=1.N
      SUMF#0.0
C FIND AREA OF SURFACE I
      CALL DIST(1,1,1,2,AR(1))
      DO 200 J=1,N
C FIND LENGTHS OF CROSSED AND UNCROSSED STRINGS
      CALL DIST(1,1,J,1,D11)
      CALL DIST(1,1,J,2,D12)
      CALL DIST(1,2,J,1,D21)
      CALL DIST(1,2,J,2,D22)
C FIND WHICH ARE CROSSED
      S1=D11+D22
      S2=D12+D21
      A1 = S1
      A2=S2
      IF($1.GT.$2)GO TO 201
      A1=S2
      A2=S1
 201
          CONTINUE
      F(1,J)=0.0
      IF(1.EQ.J)GO TO 200
      F(I,J)=(A1-A2)/(2.0*AR(I))
C SUM CF VIEW FACTORS SHOULD EQUAL ONE FOR ENCLOSURE
      SUMF=SUMF+F(1, J)
 200
          CONTINUE
          CONTINUE
 100
      RÉTURN
      END
```